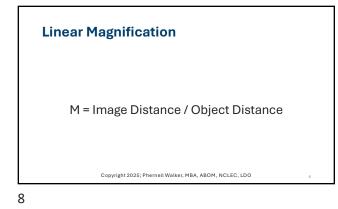
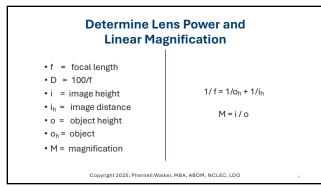
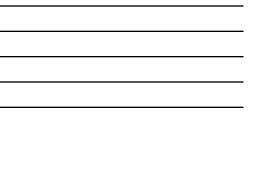
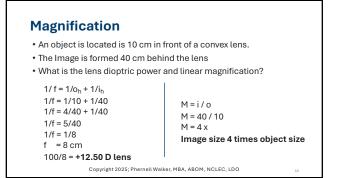


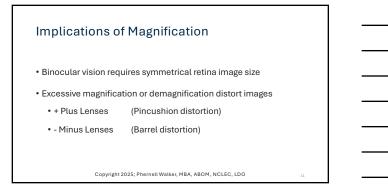
Image Size to Object Size

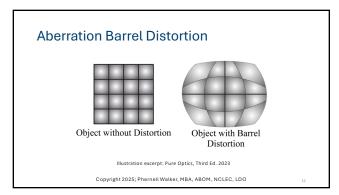

- Magnification increased image size compared to object size.
- Demagnification decreased image size compared to object size.

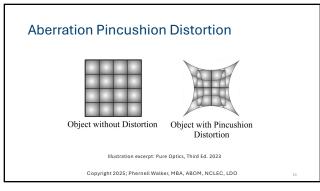

Copyright 2025; Phernell Walker, MBA, ABOM, NCLEC, LDO

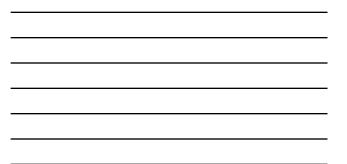





7







11

- \bullet Spectacle Lens Power (D_{\rm e})
- Base Curve (D₁)
- \bullet Vertex Distance (h_{\mbox{\scriptsize M}})
- Refractive Index (n)
- Lens Thickness (t)

15

Copyright 2025; Phernell Walker, MBA, ABOM, NCLEC, LDO

Magnification Due to Lens Geometry

 $SF = 1 / 1 - (t / n) (D_1)$

16

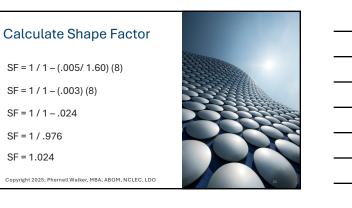
Magnification Due to Lens Power PF = 1 / 1 - h_M (D_e) Copyright 2025; Phernell Walker, MBA, ABOM, NCLEC, LDO

Combining Lens Geometry and Power $SF = 1 / 1 - (t / n) (D_1)$ $PF = 1 / 1 - h_M (D_e)$ SM in % = [(SF) (PF) - 1] (100)Copyright 2025; Phernell Warker, MBA, ABOM, NCLEC, LDO

18

Cpyright: 2025 Phernell Walker, MBA, ABOM, LDO

Example


A patient has a prescription and fitting parameters: Single vision lenses, +4.00 DS, O.U.

The lenses are made from 1.60 n, 5 mm thick, vertex = 14 mm and a base curve of +8.00 D.

What is the percentage of spectacle magnification?

Copyright 2025; Phernell Walker, MBA, ABOM, NCLEC, LDO

19

20

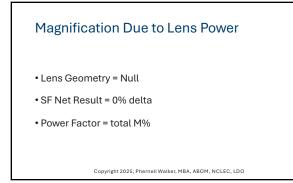
Calculate Power Factor $PF = 1 / 1 - (h_M) (D_e)$ PF = 1 / 1 - (.014) (+4.00)PF = 1 / 1 - .056 PF = 1 / .944 PF = 1.059 Copyright 2025; Phernell Walker, MBA, ABOM, NCLEC, LDO

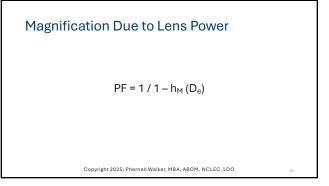
Multiply SF x PF

SM in % = [(SF) (PF) -1] 100 SM = [(1.024) (1.059) - 1] 100 SM = [1.084 - 1] 100 SM = 8%

Copyright 2025; Phernell Walker, MBA, ABOM, NCLEC, LDO

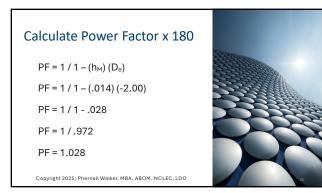
22

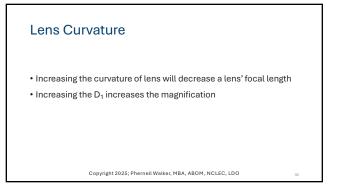

Example

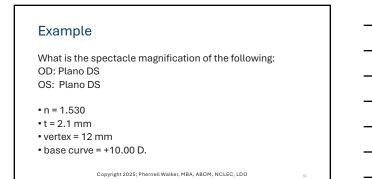

What is the spectacle magnification in the 90th and 180th meridian of lens power: OD -2.00 -1.00 x 180

- n = 1.50
- t = 1.5 mm
- vertex = 14 mm
- base curve = +6.00 D.

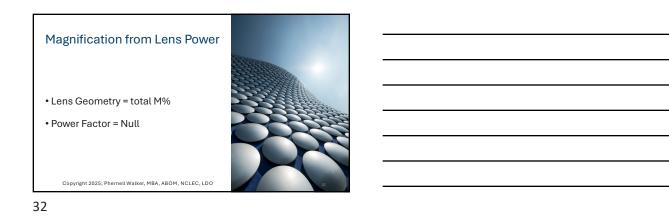
Copyright 2025; Phernell Walker, MBA, ABOM, NCLEC, LDO

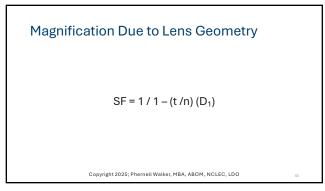

23

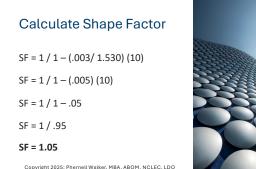

Calculate Power Factor x 090	
PF = 1 / 1 – (h _M) (D _e)	
PF = 1 / 1 – (.014) (-3.00)	
PF = 1 / 1042	
PF = 1 / .958	
PF = 1.043	
Copyright 2025; Phernell Walker, MBA, ABOM, NCLEC, LDO	



28

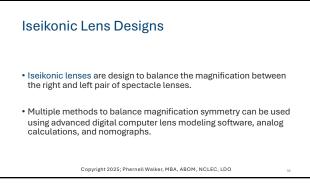

Calculate Power Factor x 180
(PF @ 090 - PF @ 180) (100) • 1.043 - 1.028
• (0.015) (100)
• Delta = 1.5%
Copyright 2025; Phernell Walker, MBA, ABOM, NCLEC, LDO

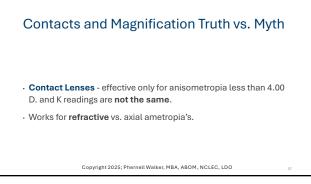

29



31

34


Magnification Needed for Afocal Size Lenses


 $Mt = -t (D_2) / 10n$

- Mt = Total magnification needed
- -t = Thickness
- D₂ = Ocular curve
- n = Substrates refractive index

Copyright 2025; Phernell Walker, MBA, ABOM, NCLEC, LDO

35

37

Analog 20/20 Method

1. Multiply the stronger lens' base curve and thickness by 20%.

Copyright 2025; Phernell Walker, MBA, ABOM, NCLEC, LDO

2. Use the product of this calculation for the opposing lens.

38

Analog 20/20 Method

OD:+5.00 DS (t = 8.25 mm, BC +10.00 D) OS:+2.00 DS (t = 5.10 mm), BC +8.25 D)

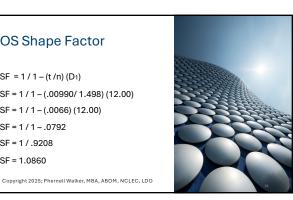
Analog 20/20 Method

Existing Parameters

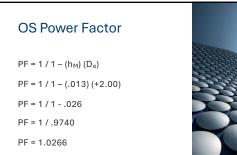
OD:+5.00 DS (t = 8.25 mm, BC +10.00 D) OS: +2.00 DS (t = 5.10 mm, BC +8.25 D)

New Parameters

OD:+5.00 DS (t = 8.25 mm, BC +10.00 D) OS: +2.00 DS (t = 9.90 mm, BC +12.00 D)

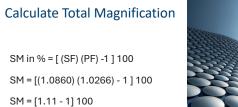

Copyright 2025; Phernell Walker, MBA, ABOM, NCLEC, LDO

OS Shape Factor


SF = 1 / 1 - (.00990/ 1.498) (12.00) SF = 1 / 1 - (.0066) (12.00) SF = 1 / 1 - .0792 SF = 1 / .9208 SF = 1.0860

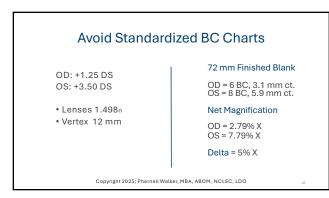
SF = 1 / 1 - (t /n) (D1)

40


41

42

Copyright 2025; Phernell Walker, MBA, ABOM, NCLEC, LDO

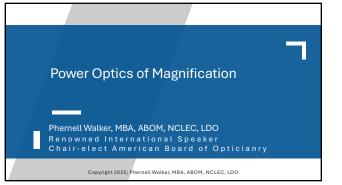

Copyright 2025: Phernell Walker, MBA, ABOM, NCLEC, LDO

43

SM = 11%

Lens	SM Non-Iseikonic	SM Iseikonic
OD	13.30%	13.30%
OS	6.04%	11.43%
Delta	7.26%	2.13%

44



Increases magnification	
Increases magnification	
Balancing Spectacle Magnification	
Change vertex and thickness Vs. base curve	
Change base curve and vertex Vs. thickness	
s Third Edition 2023 textbook	

46

47

