\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

On behalf of Vision Expo, we sincerely
thank you for being with us this year.
\qquad

Vision Expo Has Gone Green!
We have eliminated all paper session evaluation forms. Please be sure to
complete your electronic session evaluations online when you login to
request your CE Letter for each course you attended! Your feedback is
important to
important to us as our Conference Advisory Board considers content and
speakers for future meetings to provide you with the best education
possible.
\qquad
\qquad
\qquad
\qquad
\qquad

| VIISION |
| :---: | :---: | :---: |
| EXPO |

2

Speaker Financial Disclosure

Bob Alexander has no financial interests to disclose.

\qquad
\qquad
\qquad
\qquad

6

Formulas

Formulas on the following slides are from:
'System for Ophthalmic Dispensing', Third Edition

- The Effects of Tilting Lenses pg. 410-411
- Induced Prism with Wrap Around Eyewear pg. 413 \qquad 7

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
8

\qquad
9

\qquad

Recognize a Compensated Rx

Compensated Rx
Compensated Rx
Rx that was ordered
vs.

Rx that was delivered
\qquad

\qquad

Rxhat
\qquad
\qquad
\qquad
\qquad
\qquad
11

Recognize a Compensated Rx
3
0 \qquad
12

\qquad
13

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

15

Why was it performed?

Back Vertex Power
This is what is measured.

Effective Power This is what the wearer perceives
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
16

Why was it performed?
You ordered a 4.00D SV Iens.
The invoice you receive states your lens is 4.00 D

During neutralization, with the power drum of your lensometer placed at 4.00D you see this placed

Would you pass this job?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
17

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

18

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
20

\qquad
21

\qquad
22

Why was it performed?
Back Vertex Power
Back vertex formula - $1 /$ distance $(m)=F(D)$
$1 / .25 \mathrm{~m}=4.00 \mathrm{D}$

\qquad
$1 / .25 \mathrm{~m}=4.00 \mathrm{D}$ \qquad
\qquad
\qquad
\qquad
23

\qquad
\qquad
24

25

Why was it performed?
Effective Power - Vertex

\qquad
\qquad
\qquad
\qquad
\qquad
26

\qquad
27

\qquad
28

\qquad
\qquad
\qquad
\qquad
\qquad

29

Pantoscopic Angle \qquad
30

Why was it performed?
Effective Power - Pantoscopic Angle
Panto of $8 \circ$ is added.
How will it affect lens power?

\qquad
31

\qquad

32

Why was it performed?
Effective Power - Pantoscopic Angle
Panto of 8° is added.
How will it affect lens power?
New lens power
New lens power
$F_{s}=F\left(1+\sin ^{2} 80\right.$
$\begin{array}{ll}\mathrm{Fs}_{\mathrm{s}}=\mathrm{F}\left(1+\sin ^{2} 8^{\circ} / 2 \mathrm{n}\right) & \mathrm{F}=\tan ^{2} 8 \\ \mathrm{Fs}_{\mathrm{s}}=3.92\left(1+\sin ^{2} 8^{\circ} / 2^{*} 1.53\right) & \mathrm{F}=0.02\end{array}$
$\mathrm{F}_{\mathrm{s}}=3.92\left(1+\sin ^{2} 8^{\circ} / 3.06\right)$
$\mathrm{Fs}_{\mathrm{s}}=3.92\left(1+\sin ^{2} 8 / 3.06\right)$
$\mathrm{Fs}_{\mathrm{s}}=3.92(1+.0194 / 3.06)$
$\mathrm{Fs}_{\mathrm{s}}=3.92(1+.0063)$
$\mathrm{F}_{\mathrm{s}}=3.92(1.0063)$
$\mathrm{F}_{\mathrm{s}}=3.94 \mathrm{D}$

\qquad
33

\qquad
34

\qquad
\qquad
\qquad
\qquad
\qquad

35

Why was it performed?
Effective Power - Face Form
Face Form of 5°
How will it affect lens power?
New lens power Induced cylinder
New lens power
$\begin{array}{ll}\mathrm{Fs}=\mathrm{F}\left(1+\sin ^{2} 50 / 2 \mathrm{n}\right) & \mathrm{F}=\tan ^{2} 80 \\ \mathrm{Fs}_{\mathrm{s}}=3.92\left(1+\sin ^{2} 50\right.\end{array}$
$\mathrm{F}_{\mathrm{s}}=3.92\left(1+\sin ^{2} 5^{\circ} / 3.06\right)$
$\mathrm{Fs}_{\mathrm{s}}=3.92\left(1+\mathrm{sin}^{2} / 2.06\right)$
$\mathrm{Fs}_{\mathrm{s}}=3.92(1+.0076 / 3.06)$
$\mathrm{F}_{\mathrm{s}}=3.92(1+.0024)$
$\mathrm{Fs}_{\mathrm{s}}=3.92(1.0024$
$\mathrm{F}_{\mathrm{s}}=3.93 \mathrm{D}$
$\mathrm{F}=\tan ^{2} 8$
$\mathrm{~F}=0.02$

\qquad
36

Why was it performed?
Effective Power - Face Form
Face Form of 50
How will it affect lens power?
New lens power
$\begin{array}{ll}\mathrm{F}_{\mathrm{s}}=\mathrm{F}\left(1+\sin ^{2} 50 / 2 n\right) & F=\tan ^{2} 5^{\circ} \\ \mathrm{Fs}_{\mathrm{s}}=3.92\left(1+\sin ^{2} 5^{\circ} / 2^{* 1} 1.53\right) & \mathrm{F}=0.01\end{array}$
$\mathrm{Fs}_{\mathrm{s}}=3.92\left(1+\sin ^{2} 5^{\circ} / 3.06\right)$
$\mathrm{F}_{\mathrm{s}}=3.92\left(1+\mathrm{sin}^{2} \mathrm{~s}\right.$
$\mathrm{Fs}_{\mathrm{s}}=3.92(1+.0076 / 3.06)$
$\mathrm{Fs}_{\mathrm{s}}=3.92(1+.0024)$
$\mathrm{Fs}_{\mathrm{s}}=3.92(1.00$
$\mathrm{Fs}_{\mathrm{s}}=3.93 \mathrm{D}$

\qquad

\qquad
\qquad
\qquad
\qquad

38

\qquad

39

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
41

\qquad
\qquad
42

\qquad

Induced Prism

Prism base direction is opposite of where
light enters the lens compared to the optic
axis.
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
44

\qquad
45

\qquad
46

\qquad
\qquad
\qquad

47

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
48

Theory
All formulas discussed use the 'thin lens formula'.
We don't dispense thin lenses.
Formulas can't be combined.
We cannot use 'thin lens formulas' to derive the same compensation models available by your lab. \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
50

Frame Fit
Do you know default measurements?

- Vertex
- Panto
- Wrap

Are you providing actual measurements? \qquad
51

\qquad
52

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
53

\qquad
\qquad
\qquad
\qquad
\qquad

54

Troubleshooting
Adjustments during troubleshooting

- Panto
- Effectively moves Fit Height
- Induces cylinder at 180

- Faceform

- Effectively moves PD
- Induces cylinder at 090
- Induces BO prism
- Vertex
- Further than refraction = more plus power
- Closer than refraction = less plus power \qquad
55

\qquad

56

Objectives
At the end of this presentation, you will be able to:

- Recognize a compensated prescription and comprehend why it was performed
- Identify what frame fitting procedures can affect compensation
- Proper spectacle frame adjustments prior to obtaining fitting measurements for best compensation results \qquad
\qquad

57

Taking the Complication Out of Compensation

Presented by:

Bob Alexander, ABOM, NCLEM \qquad

\qquad
59

