Specialty Contact Lens Workshop

Melissa Barnett, OD, FAAO, FSLS, FBCLA One Shields Avenue Davis, CA 95616 drbarnett@ucdavis.edu

Shalu Pal, HBSc, OD, FAAO, FSLA, FBCLA

5 Marine Parade Drive, Suite 913 Toronto Ontario M8V 4B4 shalupal@hotmail.com

John D. Gelles, OD, FAAO, FIAO, FCLSA, FSLS, FBCLA

Director, Specialty Contact Lens Division: Cornea and Laser Eye Institute- Hersh Vision Group & CLEI Center for Keratoconus Assistant Clinical Professor: Rutgers New Jersey Medical School Department of Ophthalmology & Visual Science Adjunct Clinical Professor: New England College of Optometry, State University of New York College of Optometry, and Illinois College of Optometry johngellesod@gmail.com

Sheila Morrison, OD, MSc, FSLS

Private Practice Owner in Calgary Canada Co-residency supervisor of Mission Eye Care Residency in Cornea and Contact Lens Alberta Association of Optometrists CE Committee Co-founder - Myopia Academy Co-Founder - Canadian Contact Lens Academy sheilamorrison000@gmail.com

Course Description

This two hour presentation is an interactive, workshop format where principles of specialty contact lenses are discussed. A didactic portion is followed by hands-on practice with scleral profilometry and scleral, ortho-K and hybrid lenses.

Course Learning Objectives

- 1. Understand scleral lens indications
- 2. Learn how to fit scleral lenses
- 3. Learn how to fit ortho-K lenses
- 4. Understand the various hybrid contact lenses available
- 5. Learn different methods of applying and removing hybrid contact lenses

6. Obtain knowledge on how to use scleral profilometry for fitting success

Outline

I. Scleral Lens Terminology, Designs and Indications

- A. Lens diameter
- B. Lens designs and parameters
 - a. Scleral lens geometry
 - i. Optical zone
 - ii. Transition zone
 - iii. Landing zone
 - b. Importance of scleral lens sagittal depth
 - i. Base curve radius vs overall diameter
- C. Scleral lens indications
 - a. Regular corneas
 - i. Refractive error
 - ii. Astigmatism
 - iii. Presbyopia
 - b. Irregular corneas
 - i. Primary and secondary corneal ectasias
 - 1. Advanced (notably decentered) keratoconus
 - 2. Keratoglobus
 - 3. Pellucid marginal degeneration
 - ii. Post-surgical/refractive
 - 1. Post-LASIK
 - 2. Post-PRK
 - 3. Post-RK
 - 4. Post Penetrating keratoplasty
 - a. Endothelial cell count
 - b. Scleral lens wearing time
 - iii. Corneal transplants
 - iv. Trauma
 - v. Corneal scars
 - vi. Corneal degenerations or dystrophies
 - 1. Salzmann's nodular degeneration
 - 2. Terrien's marginal degeneration
 - vii. Epithelial defects
 - c. Ocular surface disease
 - i. Graft versus host disease
 - ii. Sjögren's syndrome
 - iii. Stevens Johnson syndrome
 - iv. Neurotrophic keratopathy

II. Scleral Lens Fitting Principles

- A. The basic steps Fitting
 - a. Completely bridge over the cornea and limbus
 - i. Corneal clearance
 - 1. Excessive corneal clearance
 - 2. Adequate corneal clearance
 - a. Around 200um to minimize corneal hypoxia
 - 3. Corneal touch
 - ii. Tips to achieve adequate corneal clearance
 - 1. Compare to scleral lens center thickness
 - 2. Account for scleral lens settling
 - 3. Ideal to assess fit after 30 minutes of in office wear
 - 4. Lens settling
 - iii. Limbal clearance
 - 1. Excessive limbal clearance
 - a. Limbal microcystic edema
 - 2. Adequate limbal clearance
 - a. Around 60um to minimize corneal hypoxia
 - b. Difficult to assess when less than 40um thick
 - 3. Limbal touch
 - a. Compression ring or limbal staining
 - b. Provide an adequate "landing" on the sclera
 - i. Scleral landing
 - 1. Scleral impingement
 - a. Arcuate edge staining on the conjunctiva
 - 2. Haptic compression
 - a. Blanching of conjunctival blood vessels
 - b. Rebound injection post scleral lens removal
 - 3. Edge lift
 - a. May cause late forming bubbles
 - b. May increase rate of chamber debris
 - 4. Adequate haptic alignment
 - ii. Tips to achieve adequate haptic alignment
 - 1. Heel vs toe effect
 - 2. Toric haptics, especially if scleral lens OAD is greater than 15.0mm
 - 3. Account for scleral lens settling
 - 4. New scleral mapping technologies
 - c. Ensure adequate tear flow under the lens
 - i. Tear exchange limited to 0.2% per minute
- III. Hands-On Training
 - A. Cleaning and disinfection of scleral lenses
 - B. Selection of base curve/vault
 - C. Application with plunger vs finger techniques
 - a. Demonstrate patient positioning
 - b. Suction vs non-suction
 - c. Exposure to various scleral lens insertion tools that may benefit patients

- D. Assessing scleral lens fit in free space, slit lamp and anterior segment OCT
 - a. Bubble formation
 - b. Vault and fluorescein evaluation
 - c. Assessing peripheral fit (landing)
 - d. Assessing tear flow
- E. Removal technique
 - a. Plunger
 - i. Importance of slightly decentered plunger placement
 - b. Hands/finger
- F. Solutions
 - a. Application solutions
 - b. Disinfection solutions
 - i. Hydrogen peroxide solutions
 - ii. Scleral lens compatible RGP cleaning solutions
 - c. Additional cleaners
- IV. A variety of approaches to scleral lens fitting
 - i. Anterior segment OCT
 - ii. Slit lamp biomicroscopy with and without sodium fluorescein
- V. Orthokeratology Introduction
 - a. History
 - b. Modern Design
 - i. Reverse Geometry Design
 - 1. Flatter Back Optic Zone Diameter versus first peripheral curve
 - ii. Gas Permeable Materials
 - iii. Topography Design
 - 1. Empirical Design
 - 2. Corneal Changes
 - a. Epithelial Changes First
 - i. Intracellular Fluid
 - b. Most likely long term epithelial and stromal remodeling
 - c. Importance of Pachymetry
 - 3. Fluorescein Patterns
 - a. 50 microns discerned by the eye of slit lamp
 - b. Central Base Curve and Alignment Zone
 - c. Reverse Curve
 - 4. Choosing Candidates for Myopic Orthokeratology
 - i. Topography Basics
 - 1. Axial
 - 2. Tangential
 - 3. Eccentricity Values
 - 4. Elevation Map
 - ii. Refractive Error
 - 1. Approved up to -6.00
 - 2. Off Label Designs for higher myopia
 - 5. Troubleshooting Topography

VI. Hybrid contact lenses

- a. Anatomy
- b. Indications
- c. Fitting process
 - 1. Empirical vs diagnostic
- d. Evaluation
- e. Hybrid contact lens application
 - 2. Plunger
 - 3. Finger tripod
- f. Hybrid contact lens removal
- g. Plunger not recommended
- h. Pinching soft skirt

Scleral Shape

- 1. Introduction on ocular surface profile
- 2. The importance of data
 - a. To understand the scleral shape
 - b. Obtain measurements
 - c. Custom made scleral lenses based on ocular shape
- 3. Lens customization
 - a. Using Eaglet Eye Surface Profiler (ESP)
 - b. Using Corneo Scleral Profile (CSP) report module with the Pentacam[®] (Oculus Optikgeräte)
 - c. Using sMap3D corneo-scleral topographer (Visionary Optics)
 - d. Using an impression-based technique