

Learning Objectives

Apply an analytical approach (S.O.A.P.) method to address a patient's complex vision needs

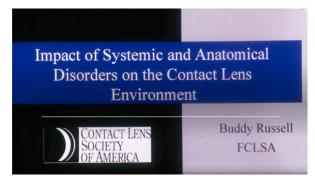
Devise an appropriate advance contact lens solution

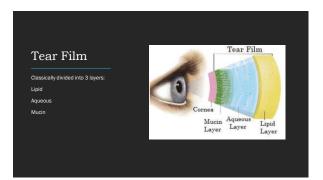
Obtain and document the history of patients who have complex ocular conditions that require specialty lenses

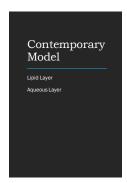
2

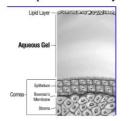
Learning Objectives Cont.

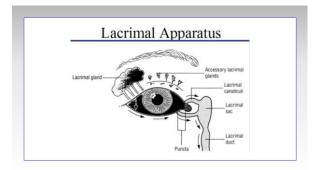
- Assess technical aspects of the patients complex ocular status to determine contact lens options
- bid Discuss with the patient their needs, expectations, and limitations
- Analyze information and explain lens options to meet patient needs
- Demonstrate knowledge and comprehension of concepts in Domain I

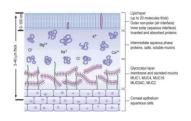

/


8









The Aqueous Gel Layer

- Mucous Layer

 Mucopolysaccharide
 glycoproteins

 N-Ac-glucosamines
 sialic acid
 fucose
 mannose
 Galactose
- Aqueous Layer

 water 98%
 solids 2%
 Inorganics
 cations
 Anions
 Organics
 urea
 amino acids
 Proteins
 abumin
 tear prealbun
 globulins
 lysozyme
 B-lysin
 lactoferrin
- Lipid Layer

 waxes

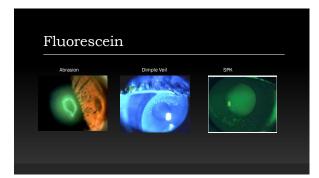
 fatty acids

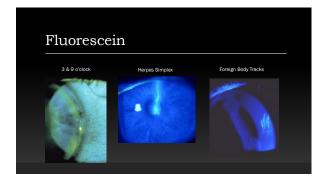
 cholesterol

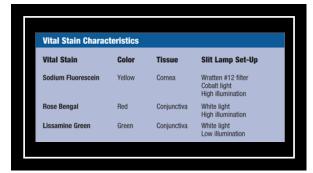
 cholesterol esters

 lecithin

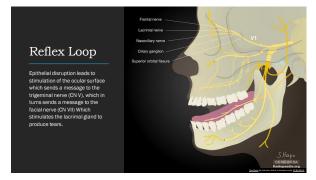
 triglycerides

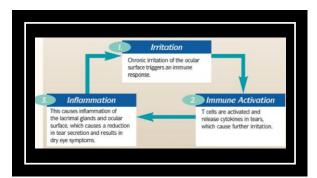

Tear Film Components

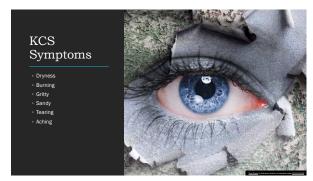

16

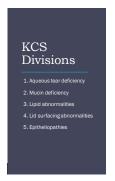


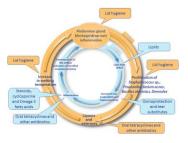
17

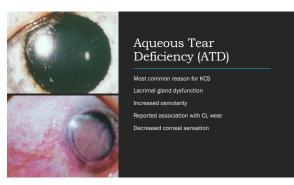


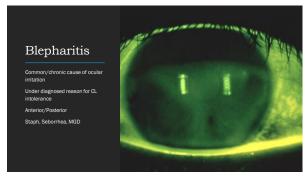


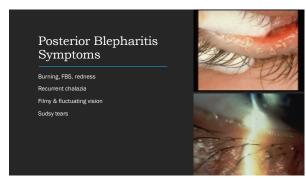












35

Anterior Blepharitis Symptoms


Hard, brittle scales
Matted crust
Chronic papillary reaction
Injection of bulbar & tarsal
conjunctiva
Corneal findings

Meibomian Gland Dysfunction

Lid Pathology

Distachiasis can be congenital or acquired where an extra row of lashes emerge from the meibomian glands.

Trichasis is an acquired condition in which the lashes emerge from their normal anterior origin and curve backwards.

40

Lid Pathology

Ectropion is where the lower lid everts outward, causing the lower lid is unable to support the lacrimal lake.

Entropion is the inward rotation of the lid margin, causing the lashes to rub against the globe.

41

Lid Pathology

Floppy Lid Syndrome (FLS) is characterized by a rubbery, floppy, easily everted upper lid.

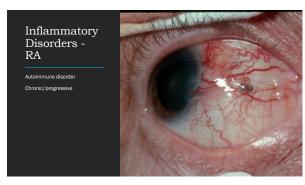
Lash Ptosis is characterized by the downward angle of the eyelashes of the upper eyelid and has been associated with FLS.

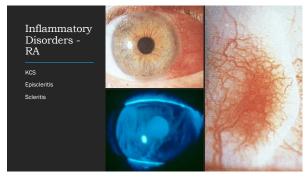
Lid Pathology

Lagophthalmos is the inability to completely close the eyes during a blink.

43

44





Systemic Disorders

Sjogren's Syndrome Steven's-Johnson Syndrome Rheumatoid Arthritis Diabetes Mellitus Thyroid disease Respiratory disorders

47

Scleritis

Necrotizing scleritis is most destructive form

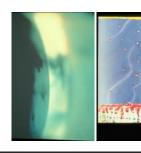
~40% of patients diagnosed with this form suffer permanent vision loss

~29% die within 5 years due to complication of vasculitis

50

Endocrine Disorders – Thyroid Disease

Regulates metabolism


Chemical activity in cells that releases energy from nutrients to create proteins

Hyperthyroidism Hypothyroidism

53

Endocrine Disorders -Reproductive

High & low levels Conflicting data

55

Respiratory Disorders

Rhinitis Asthma Sinusitis

56

Environmental Factors – Air Quality Humidity Wind Dust Smoke Altravel Altergens

Autonomic Nervous System

- "rest and digest" - cholinergic

Sympathetic - "fight or flight"

- adrenergic

59

Autonomic Nervous System

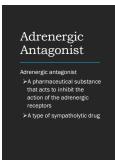
Sympathetic – epinephrine/norepinephrine > Pupils dilate

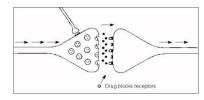
➤ Secretions decrease
➤ Sympatholytic
➤ Sympathomimetic

Parasympathetic – acetylcholine >Pupils constrict

➤ Secretions increase

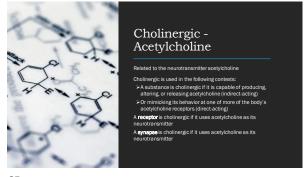
➤ Parasympatholytic > parasympathomimetic

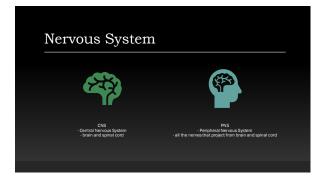

Adrenergic Agonists


Adrenergic agent is a drug which has effects similar to, or the same as epinephrine

- > A kind of sympathomimetic agent
- A kino or sympanonimmetic agent.
 May refer to something which is susceptible to epinephrine or biological receptor (adrenergic receptors).
 Adrenergic drugs either stimulate a response (agonists) or inhibit (antagonists)
- $\succ~$ 5 categories of receptors: a1, a2, $\beta1,$ $\beta2,$ and $\beta3$
- Agonists vary in specificity between receptors
 Beta Blockers block action of epinephrine and norepinephrine

62

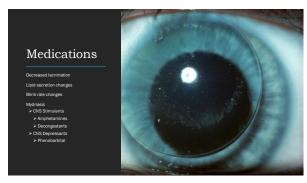


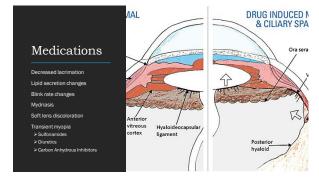

Cholinergic Antagonists Anticholinergics

- > Drugs that bind to but do not activate cholinergic receptors
- ➤ Blocking the actions of acetylcholine or cholinergic

64


65





Thank You!	If you have any questions, please email me at alspaughj@durhamtech.edu