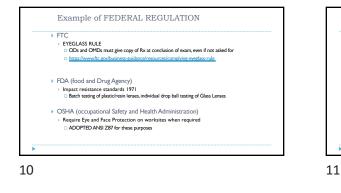
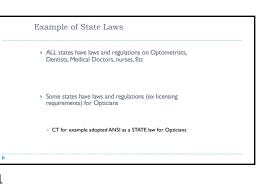
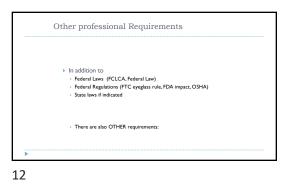
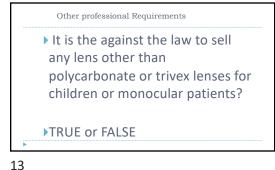


Domain 3 Tasks > Explain the use of ophthalmic instrumentation > Analyze the utilization of dispensing information > Determine method of fabrication and ordering > Distinguish the uses of visual assessment instrumentation > Apply knowledge of legal and professional requirements for equipment maintenance




•	Remember that our "RULES" that we have to follow are broken into :
1) Laws (passed by lawmakers and signed off on by an executive)
2	Pegulations (rules and guidelines written to enforce or clarify laws, generally by a specific officer or department, and have the SAME legal standing, and can be enforced, just like "laws")


 And these Laws at 1)Federa 	nd Regulations can be	passed by:	
2)State G	ov		
3)Local G	ov		


	<u>eral Laws</u> eral Regulation:	<u>s</u>			
	e Laws e Regulations				
• <u>Loc</u> a	al Laws and reg	ulation (less ar	plicable norma	<u>lv)</u>	

 Fairness to Contact 	Lens Consumer Act		
Must release CL Rx			
Online can sell, but	must verify (I business day a	and is filled)	
ENFORCED by FEE	ERAL TRADE COMMITTE	E (FTC)	

Other professional Requirements

- Actually there is generally no "law" (as far as I am aware).
- There IS, however, a legal concept called "duty to warn"
- in CIVIL cases, a professional can be held liable for injuries caused to another, if the practitioner had the opportunity to warn the patient of a hazard and failed to do so.

14

Duty to Warn Optician has a duty to investigate what a patients needs are and to recommend the appropriate lens or lenses. IN absence of documentation, the practitioner can be held liable AND potentially revocation or action against license Many companies, concerned about liability, especially in minors, will set company policies to mandate using ONLY impact resistant lenses for minors, both to satisfy this "duty to warn" and to mitigate any potential liability (prevent lawsuits from injured patient, especially a child)

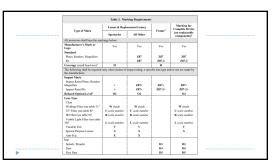
Back to ANSI

Recall that OSHA controls workplace safety (Eye and Face protection)

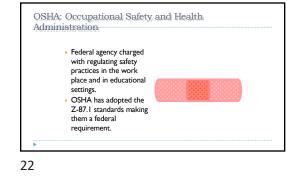
 Simply ADOPTED the "voluntary" ANSI Z87 standards to simplify
process

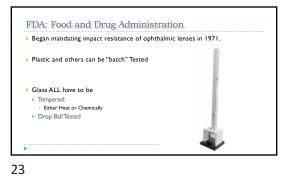
16

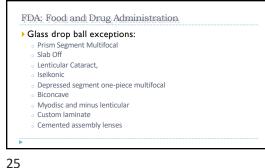
 Basic Impact 	High Impact
Z-87 markings	Z-87-2 markings (all now)
3.0 mm min CT	2.0 mm min for HI mat
•	poly/trivex/tribri
•	3.0 mm for all others
•	CR-39, etc


18

ANSI Z87 • Lens Markings: • Upper temp corner includes: • Manufacturer's initials • "+" if Hi Impact Material (Poly, etc) • Add'l • V for Variable • S for Special Purpose • etc • 19

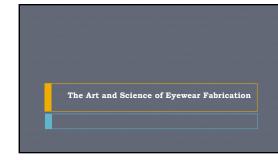

- I/4" Steel Ball at 150 Feet/Second
- Lens Thickness: 2.0mm.
- → Lens Markings: Sandblasted manufacturer's I.D. and "+"
- > All Frames, Basic or High Impact must meet High Impact Standards
- Frame Markings: Front A, DBL, Z87-2 or Z87-2+, Manufacturer's I.D. Temples - Length, Z87-2 or Z87-2+, , Manufacturer's I.D. On one temple


20


21

24

Glass Drop	Ball Test:			
Lenses mus	be capable of	passing Dro	p-Ball Test:	
5/8"steel b	all,			
▶ .56oz,				
 Height of ! 	0 inches			
Safety Glass	s, 3.0 = 1.0" stee	l ball		
Records m	st be keep thre	ee years afte	r purchase.	

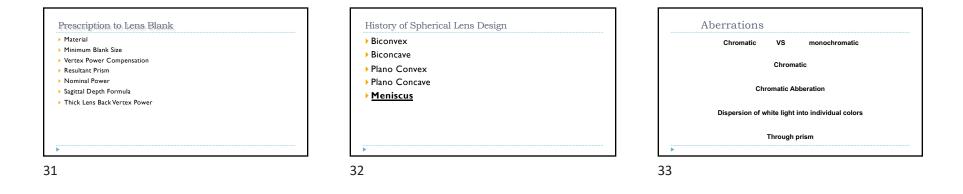


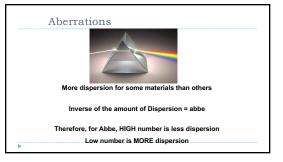
FTC: Federal Trade Commission

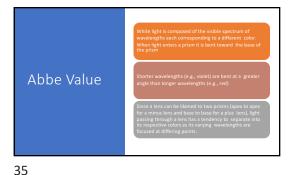
Established to prevent unfair business practices.

> Eyeglasses I and Eyeglasses II investigational studies.

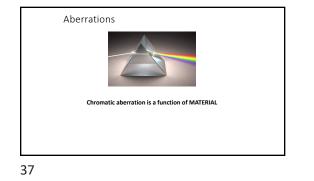
 Doctor must give the patient a copy of their prescription immediately after the exam.

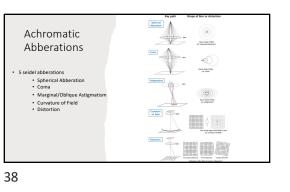

26

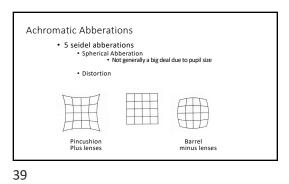

The Art and Science of Eyewear Fabrication

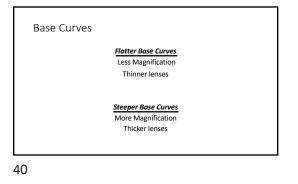

- Apply formulae used in the manufacture of eyewear.
- Describe the capabilities and limitations of conventional and digital surfacing.
- > Explain the lens blank selection process.
- Describe factors that affect lens curves and thickness.
- List the steps from surface layout to finished lens edging.
- \blacktriangleright Apply verification standards in compliance with ANSI and federal regulations.

	Lens Designs	
	Single Vision	
	• Spherical • Aspheric • Atoric	
	Bifocals	
	Progressive Addition Lenses	
•		
30		

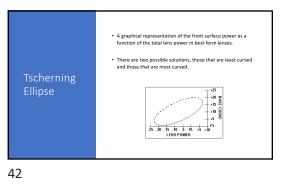


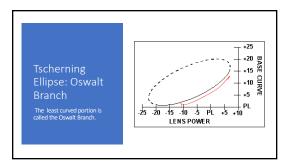


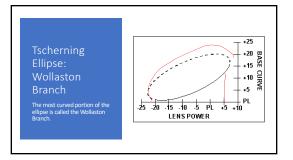



Index of Refra	ction an	d Abbe Valu
MATERIAL	INDEX	ABBE VALUE
Crown Glass	1.523	59
High Index Glass	1.60	42
High Index Glass	1.70	39
Plastic CR-29	1.49	58
Mid Index Plastic	1.54	47
Mid Index Plastic	1.56	26
High Index Plastic	1.60	26
High Index Plastic	1.66	32
Triwns	1.53	43
Polycarbonate	1.58	20

36

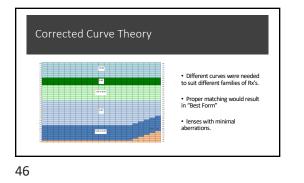




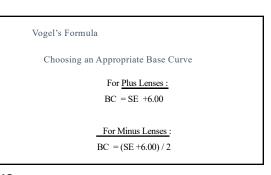

Corrective Curve or "Best Form" Lens Theory

Tscherning Ellipse

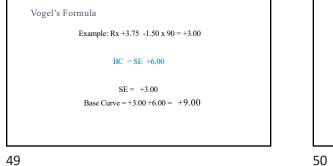
Best Base Curve to eliminate Marginal or Oblique Astigmatism

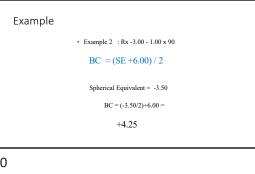

Corrected Curve Theory

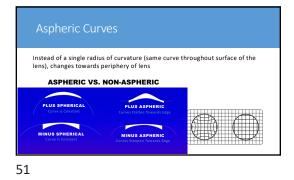
• Different curves were needed to suit different families of Rx's.


• Proper matching would result in "Best Form" lenses with minimal aberrations.

43


44





48

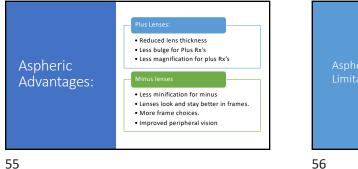
Aspheric Curves: Three main uses

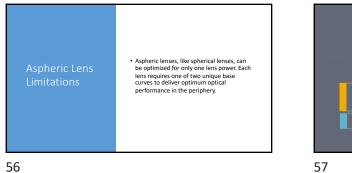
Optical Aberration Control
 Improved off center optics for Rx's > +7.00 or -23.00D than spherical base curve

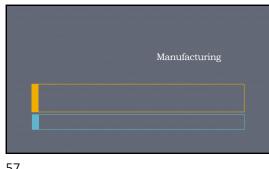
Cosmetic:
 Allows the use of flatter base curves while maintaining good optics.

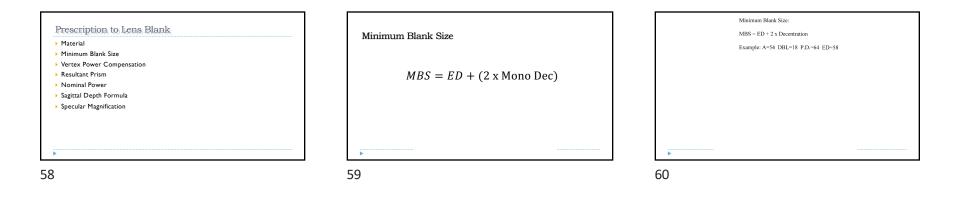
Power Changes:
 Used for progressive addition lenses.

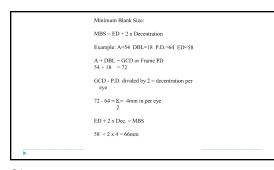
Aspheric Lenses

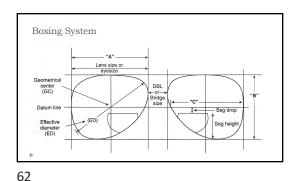

53

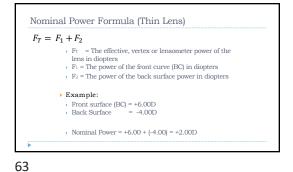

- Non-spherical surface that gradually changes in curvature from the center of the lens toward the edge
- Delivers the peripheral clarity of a "Best-Form" lens with a flatter profile.
- With high index, up to 25% thinner and 30% lighter

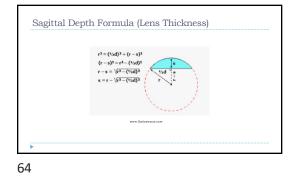

52

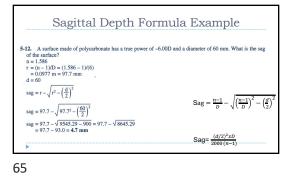

Aspheric vs Best Form Lenses

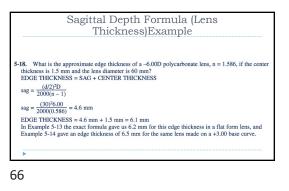

+4.00 D Lens Design Comparison*					
	Best Form	Flat	Asp heric		
	Lens	Lens	Lens		
Front Curve	9.75 D	4.25 D	4.25 D		
Center Thickness	6.6 mm	5.9 mm	5.1 mm		
Weight	20.6 grams	17.7 grams	14.8 grams		
Plate Height	13.7 mm	6.0 mm	5.1 mm		
Rx off-axis	+3.78 DS	+5.18 DS -0.99 DC	+3.77 DS		

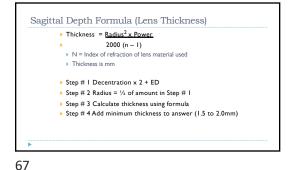


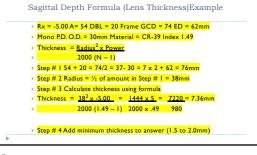


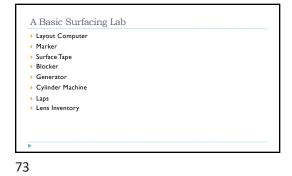


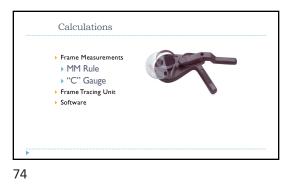


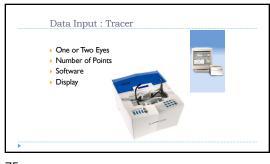




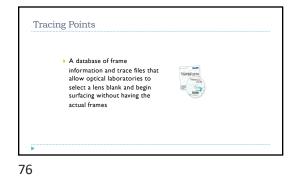


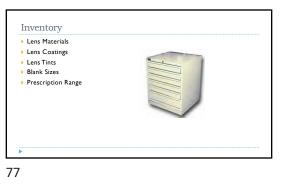


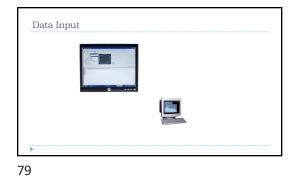

Specular Magnificatioi Magnificatioi	e spectacle magnification for each of the lenses in the prescription below, and what is the $\frac{1}{300}$ for the two lenses? $\frac{1}{300}$ for the two lenses? $\frac{1}{300}$ or the two lenses are made of CR-39, n = 1.498, BCs +6.25 and +9.25. vo to the completed lense shows thicknesses of 3 mm and 5 mm.
OD:	98:
$SM = \frac{1}{1 - \left(\frac{1}{n}\right)D_1} \times \frac{1}{1 - hD}$	$SM = \frac{1}{1 - \left(\frac{1}{n} D_1 \times \frac{1}{1 - hD}\right)}$
$SM = \frac{1}{1 - (\frac{0.003}{1.498})(+6.25)} \times \frac{1}{1 - (0.015)(+1.50)}$	$SM = \frac{1}{1 - (\frac{1.005}{1.498})^{(+9.25)}} \times \frac{1}{1 - (0.015)^{(+4.50)}}$
$SM = \frac{1}{1 - 0.0125167} \times \frac{1}{1 - 0.0225}$	$SM = \frac{1}{1 - 0.0308745} \times \frac{1}{1 - 0.0675}$
SM = (1.01268)(1.02302) = 1.036	SM = (1. 03186)(1. 07239) = 1.107
%SM = (SM - 1)100 = (1.036 - 1)100 = 3.6%	%SM = (SM - 1)100 = (1.107 - 1)100 = 10.7%
The right lens has 3.6% magnification, and the left	ft lens has 10.7% magnification. The wearer has a
magnification difference of 10.7 - 3.6 = 7.1%.	
If the wearer has good vision in each eye when co What can be done to decrease the 7.1% magnifica	proceed, this person might have a problem with fusion. ation difference? ¹
	RULES FOR SPECTACLE MAGNIFICATION
t = thickness of the lens in meters n = index of refraction of the lens material	PLUS LENS MINUS LENS
D1 = base curve (BC) or front surface power of the lens	Increase BC More magnification Less minification
D = actual power of the lens h = vertex distance + 3 mm, converted to meters	
P	



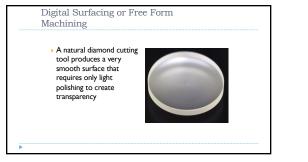
 Conventional Surfacin 	g		
 Digital Surfacing 			

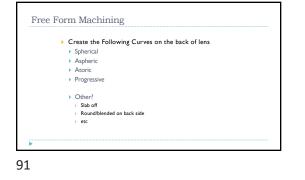

 Spherical, Toric 			
 Calculations 			
Layout			
 Blocking 			
Generating			
Fining			
Polishing			

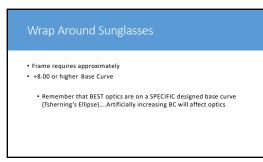




Layout

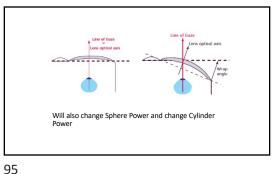

89

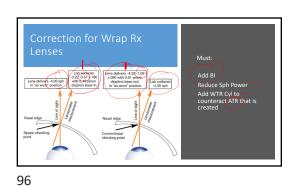

	Surfacing
	Grinding Curve Questions:
	IF you have a -3.00 -2.00 × 180
	Given a lens with a +3.00 Base Curve
	Transpose Rx:
	 What are Grinding Curves
	What is Power at 180?
	 What is power at 90
	 Type of Astigmatism
	 Orientation of Astigmatism
•	

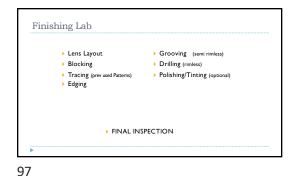


Digital Surfacing or Free Form Machining > Each lens may require over 10 million calculations to

- generate the data file for the free forming machine to create the lens' surface The computer lens design is exact. Several companies use the same machinery. It is each company'ss computer
- program that determines the end product

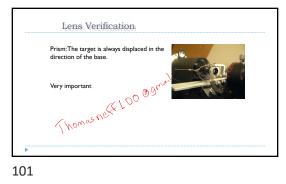


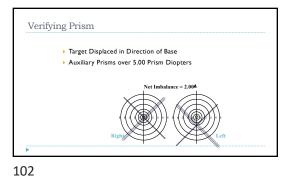


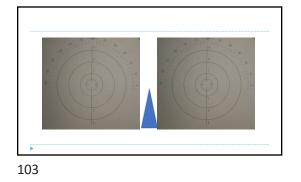


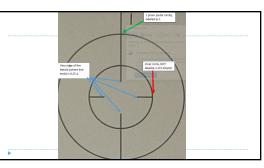
by increasing WRAP, will INCREASE Base OUT prism To counter, will have to ADD BI to counteract

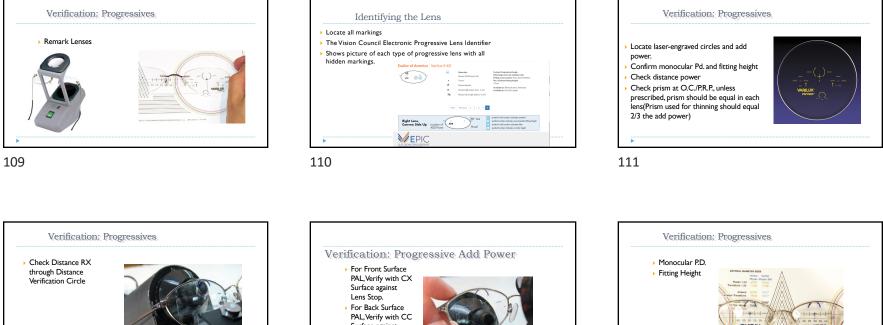







Inspection & Verification





 If you ar center). 	e given a $+5.00$ and center the lens in the Lensometer (at the C	ptical
Assume	this is an OD	
NOW	10VE THE LENS IN 4 mm.	
What is	the prism?	
Where:	are the mires found in the lensometer?	

