

28

29

$-2.00-1.500090$

 $-\frac{-2.00}{-3.430} T \operatorname{Tin}$ Spesitron| - Focal Length | - Nominal Lens Power |
| :---: | :---: |
| 1 | $F_{T}=F_{1}+F_{2}$ |
| - Horizontal Decentration | - Index Formula |
| | |
| $\frac{F P D}{2}-\text { Mono PPD }=H D$ | $N=\frac{\text { Speed of light in air }(186,000 \mathrm{mps})}{\text { speed of light in medium }}$ |
| - Vertical Decentration | - Vertex Compensation |
| oc - $\frac{B}{2}=V D$ | $D c=\frac{d D^{2}}{1000}$ |
| | Prentice Rule |
| $M B S=E D+(2 \times \text { Mono Dec })$ | $\Delta=\frac{d D}{10} \quad d=\frac{\Delta x 10}{D} \quad D=\frac{\Delta x 10}{d}$ |

30

31

34

35

Oblique Cylinder Power

- To determine the portion of crinioer power

$-2.50-2.00$ @ 030

3. Take percenenage of ofylinere powe and ad dat 10 sphere powe.

36

Oblique Cylinder Power	
What is the power at 180 and 90 for following Rxs:	∞
$-3.00-1.00 \times 055$	
Power @ 90	-
Power @ $90=\left(\sin (35)^{2} \times 1.00+3.00\right)$	\sim
Power @ 90 = 3.33 (3.37)	
Power @ 180	
Power@ $180=\left(\sin (55)^{2} x 1.00+3.00\right)$ Power @ $180=3.67$ (3.62)	Power@90 $=\left(\sin (A X I S)^{2} *\right.$ cri + SPH $)$
	Power @ $180=\left(\sin (A X I S)^{2} * C Y L+\right.$ SPH $)$

37

40

43

38

41

44

39

42

45

46

49

Premitifeés Rulle

The prismatic effect of a lens on rays of light that pass through it at points other than it's optical center is equal to the product of the the dioptric power of the lens and the distance in centimeters from the optical center to the point of passage.

$$
\Delta=\frac{d D}{10} \quad d=\frac{\Delta x 10}{D} \quad D=\frac{\Delta \times 10}{d}
$$

$\Delta=$ rismatic ffect
$0=$ Lenm SVPV (in $)$

47

50

Bi-Centric Grinding

Bi-Centric Grinding

Slab off
Note...can also take DIFFERENCE in dist power at 90 between OD and Sand multiply by amount eye drops vertically and will come up with same difference (as long as ADDs are similar)

Examples

$$
\Delta=\frac{d D}{10} \quad d=\frac{\Delta x 10}{D} \quad D=\frac{\Delta x 10}{d}
$$

48

51
Find Power at 90 for both eyes VERTICALIY)
Use prentices rule to determine Prism induced in each eye
Find difference, and that is amount of slab off to order at ne

52

OD - $4.00-2.00 \times 180$
+2.50 Add ou
Looking 4 mm above seg at distance
Looking 5 mm below seg while reading Looking 5 mm be
Total 9 mm drop
$\begin{array}{lll}\text { OD: Power at } 90=-6.00 & \text { Drop }=9 \mathrm{~mm} & \text { prism }=5.4 \\ \text { OS: Power at } 90=-3.00 & \text { Drop }=9 \mathrm{~mm} \\ \text { prism }=2.7\end{array}$
Difference $=2.7$ Prism diopters...will require that much Slab off in OD to eliminate
verticical imbaliance

53

58

56

57

59
Examples
Make sure you understand Oblique Axes
Power at 90 and or 180
ANSI standards (vertical and horizontal) Prims (induced/decentered) Slab off
find diff in vertical meridian/90 OD vs os ${ }^{\text {Find diff vertical }}$ Use prentices rule to fo find amount of prism

60

