

WTF - What the Fit?

Carrie Wilson, MBA, ABOM, NCLEM Optigalconsulting.com 706-280-2742

On behalf of Vision Expo, we sincerely thank you for being with us this year.

Vision Expo Has Gone Green!

We have eliminated all paper session evaluation forms. Please be sure to complete your electronic session evaluations online when you login to request your CE Letter for each course you attended! Your feedback is important to us as our Education Planning Committee considers content and speakers for future meetings to provide you with the best education possible.

Financial Disclosure

Carrie Wilson has no financial interests to disclose.

By the end of this course, you will be able to:

-Identify frame elements that make frame fitting easier for complex eyeglass fits

- Understand the more complex lens designs that are required for higher powers
-Recognize the necessary point-of-wear measurements to take maximize efficiency in complex eyeglass fitting
- Make the necessary adjustments to fine-tune the final fit

What is the number one way that you can reduce lens thickness?

Refractive Index

Frame Shape

Specifying Minimum CT/ET Thickness

What is the number one way that you can reduce lens thickness?

Frame Fit

The Frame

Bridge

Radius of
Curvature

Tilt

End Piece

- - - -

The Frame

Temples

Frame Front

Does the bridge fit or can it be adjusted to ensure proper alignment with the visual axis?

Width

Design

Vertex Distance

The Bridge Width

Too Wide

Too Narrow

Too Wide

Too Narrow

The Bridge Design

The Frontal Angle

Too Wide
Frontal Angle

Too Wide
Frontal Angle

Good Frontal Angle

The Bridge Design

The Splay Angle and Vertex

The Radius Of Curvature

Lens and Frame Curves Working Together

Plano Base
Match -14.00 Rx

2 Base Frame -30.00 Rx

Frame Tilt

2 degrees

4 degrees

Retroscopic Tilt

End Piece

Turnback

Miter

Temples

$\underset{\substack{\text { Turn back } \\ \text { length }}}{ }$

Mastoid

Difficult Mastoid

The Frame Front

Too Wide gmm decentration each

Too Wide Hyperope

Frame Front With Astigmatism

A thicker edge at the horizontal, a small B measurement will maximize lens thickness differences.

A thicker edge at the vertical, a small B measurement will minimize lens thickness differences.

An oblique axis will need more
consideration and visualization, You may need to contact your lab for makeability help.

For all prescriptions., the desired frame B measurement is within 30% of the A measurement.

Properly Centered High Powered Lenses

$10.50-3.00 \times 07410^{\wedge} \mathrm{BI}$ +11.00-1.75 X080 10^BI 1.67

21.00 OU W/+4.00 Add, dual side lenticulated round segment.

Cr39-5.25-0.25/-
5.75-0.50

Horizontal centration

Frame monocular PD within 2 mm of the patient's monocular PD

Vertical centration

Centration
Corresponds to the required pantoscopic tilt for the fitting

- Typically within 4 mm above the datum
- Avoid B measurements that a pupil placement close to the top of the frame even if the eye is within the recommended datum

Vertex Distance

Distometer

PD Stick

Take the thickness of the lens from the center using calipers and remove the thickness from the above measurement.

Vertex Distance

$$
\text { Per mm }=\frac{\text { Diopter }^{2}}{1000}
$$

Compensated
vertex power (if
necessary) for over
+/-4 in each
meridian.

Excessive tilt will create a change in effective spherical power and induce a cylinder power for the patient.

Martin's Formula for Tilt

Martin's Formula For Tilt is the mathematical representation of this phenomenon

Martin's Formula for Tilt

A patient is prescribed a +15.00 sph lens. The lens selected is a digitally surfaced lens, noncompensated lens and the optician measures the fitting height at the pupil center. The pantoscopic tilt for the frame is 10 degrees.

Induced Rx is $\mathbf{+ 1 5 . 1 5 + 0 . 4 7 \times 1 8 0}$

Measuring Angle of Face Form

1.Frame is measured off of face after proper adjustment
2.Envision a line that moves straight across from the nasal to the temporal
3.Make a reference dot at the temporal outer limits of the eyewire
4.Draw line from the nasal of the straight line to the temporal dot
5.Use a protractor to give you the angle

Measuring Angle of Face Form

Measuring Tilt with a PD Stick

1.Ensure frame is adjusted comfortably
2. Measure pupil height with the patient in a normal posture
3. Viewing the patient from the side, help the patient modify chin height until the frame is perpendicular to the floor.
4.Dot second pupil height and measure distance between the two marks
5. Multiply the measurement by 2 and this gives you the amount of tilt

High Powered Lens Designs

High Powered Lens Designs

Plus Lenticular Rnd Bifocal
-14.0o Wrap Lenticular

-30.00 Sph Lenticular OU

-24.75 Minus Lenticular Before and After Surfacing

Vertex Distance

Sphero-Cylinder Lens Calculation - Sphere Power

A power of $-8.00-2.00 \times 180$ is refracted at 15 mm . The lenses are fit at a vertex distance of 10 mm . What power should be ordered to get the intended Rx?

Vertex Distance

$\frac{8^{2}}{1000}=\frac{64}{1000}=0.064$
Move .06 diopter for each mm of movement
$5 \times .06=.3$ diopters
Minus lenses have a stronger effective power the closer to the eye it gets so you must order weaker lenses to compensate.

So, $-8.00-0.30=-7.70$ or $-7.75 @ 180$

Vertex Distance

Sphere + Cylinder $=$ Dioptric Power to be Calculated

$$
\frac{10^{2}}{1000}=\frac{100}{1000}=0.1
$$

Move 0.1 diopter for each mm of movement
$5 \times 0.1=0.5$ diopters
So, -10.00-0.50 =-9.50 @ 090

Vertex Distance

Final power
$-8.00-2.00 \times 180$ refracted becomes
$-7.75-1.75 \times 180$ compensated

Magnification

Magnification is in an issue due to aniseikonia, or a difference in the size of images as they are interpreted by the brain.

To minimize this difference, changes to the lens design can be utilized

- Thickness - Thicker = more magnification
- Base curve - Steeper front curve = more magnification
- Vertex Distance - magnification increases the further away from the eye
- Index of Refraction - higher the index, the thinner the material can be and therefore less magnification

Magnification

To Increase Magnification	To Increase Minification
Increase Base Curve	Decrease Base Curve
Increase Center Thickness	Decrease Center Thickness
Increase Vertex of Plus Lens	Decrease Vertex of Plus Lens
Decrease Vertex of Minus Lens	Increase Vertex of Minus Lens

Remember:
For myopes, it is better to change the base curve and vertex distance as necessary
For hyperopes, it is better to change the center thickness and vertex distance

Adjusting Vertex

* Bevel placement on the lens
- Work with the lab
* Adjustment of nosepads
- Pad Arms
- Saddle on Zyl
- Plus move further away from the eye
- Minus bring closer to the eye

Conclusion

* Fit is more important than lens material for thinness
* Fine details, all the way to the bevel, can make a large difference in the finished product
* In today's world of online shopping, it is even more important to understand the nuances of fit.

