WTF – What the Fit?

Carrie Wilson, MBA, ABOM, NCLEM Optigalconsulting.com 706-280-2742

On behalf of Vision Expo, we sincerely thank you for being with us this year.

Vision Expo Has Gone Green!

We have eliminated all paper session evaluation forms. Please be sure to complete your electronic session evaluations online when you login to request your CE Letter for each course you attended! Your feedback is important to us as our Education Planning Committee considers content and speakers for future meetings to provide you with the best education possible.

Carrie Wilson has no financial interests to disclose.

Learning Objectives

By the end of this course, you will be able to:

- Identify frame elements that make frame fitting easier for complex eyeglass fits
 Understand the more complex lens designs that are required for
- higher powers
 Recognize the necessary point-of-wear measurements to take maximize efficiency in complex eyeglass fitting
 Make the necessary adjustments to fine-tune the final fit

What is the number one way that you can reduce lens thickness?

Frame Shape

Refractive Index

Specifying Minimum CT/ET Thickness

What is the number one way that you can reduce lens thickness?

Frame Fit

The Frame

Radius of Curvature

End Piece

The Frame

Temples

Frame Front

Front

visual axis?

Does the bridge fit or can it be adjusted to ensure proper alignment with the

Width

Design

Vertex Distance

The Bridge Width

Too Wide

Too Narrow

Too Wide

Too Narrow

The Bridge Design The Frontal Angle

Too Wide Frontal Angle

Too Steep Frontal Angle

Too Wide Frontal Angle

Good Frontal Angle

The Bridge Design The Splay Angle and Vertex

The Radius Of Curvature Lens and Frame Curves Working Together

4 Base Match +4.00 Rx

Plano Base Match -14.00 Rx

2 Base Lens 2 Base Frame -30.00 Rx

Frame Tilt

8 degrees

2 degrees to plan0

Retroscopic Tilt

4 degrees

End Piece

Turnback

90 degrees

Extended Endpiece

Miter

Temples

Too short

Turn back + length

Difficult Mastoid

Mastoid

The Frame Front

Too Wide 9mm decentration each

Too Deep

Too Wide Hyperope

Frame Front With Astigmatism

A thicker edge at the horizontal, a small B measurement will maximize lens thickness differences.

A thicker edge at the vertical, a small B measurement will minimize lens thickness differences.

An oblique axis will need more consideration and visualization, You may need to contact your lab for makeability help.

For all prescriptions., the desired frame B measurement is within 30% of the A measurement.

Properly Centered High Powered Lenses

21.00 OU w/+4.00 Add, dual side lenticulated round segment.

+9.00 OU FT28 photochromic Poly

10.50 -3.00 x074 10^BI +11.00 -1.75 x080 10^BI 1.67

Cr39 -5.25-0.25/-5.75-0.50

Centration

Horizontal centration

Frame monocular PD within 2 mm of the patient's monocular PD

Vertical centration

- for the fitting

Corresponds to the required pantoscopic tilt

Typically within 4 mm above the datum Avoid B measurements that a pupil placement close to the top of the frame even if the eye is within the recommended datum

Distometer

PD Stick

Take the thickness of the lens from the center using calipers and remove the thickness from the above measurement.

Compensated vertex power (if necessary) for over +/-4 in each meridian.

Martin's Formula for Tilt

Excessive tilt will create a change in effective spherical power and induce a cylinder power for the patient. Martin's Formula For Tilt is the mathematical representation of this phenomenon

Martin's Formula for Tilt

A patient is prescribed a +15.00 sph lens. The lens selected is a digitally surfaced lens, noncompensated lens and the optician measures the fitting height at the pupil center. The pantoscopic tilt for the frame is 10 degrees. Induced Rx is +15.15 +0.47 x 180

Measuring Angle of Face Form

Measuring Angle of Face Form

1.Frame is measured off of face after

2.Envision a line that moves straight across from the nasal to the temporal

3.Make a reference dot at the temporal

4.Draw line from the nasal of the straight

5.Use a protractor to give you the angle

Measuring Angle of Face Form

Martin's Formula For Tilt

1.Ensure frame is adjusted comfortably

2.Measure pupil height with the patient in a

3. Viewing the patient from the side, help the patient modify chin height until the frame

4.Dot second pupil height and measure distance between the two marks

5. Multiply the measurement by 2 and this

High Powered Lens Designs

+25.00 Plus Lenticular

-25.00 Micromyodisc

10 BC Wrap Lenticular

Frosted High Power Lenticular

27[^] BO Lenticular 7.5[^] BO Before/After

High Powered Lens Designs

Plus Lenticular Rnd Bifocal

-14.oo Wrap Lenticular -30.00 Sph Lenticular OU

-24.75 Minus Lenticular Before and After Surfacing

Sphero-Cylinder Lens Calculation – Sphere Power

A power of -8.00 -2.00 x 180 is refracted at 15 mm. The lenses are fit at a vertex distance of 10 mm. What power should be ordered to get the intended Rx?

$$\frac{8^2}{1000} = \frac{64}{1000} = 0.064$$

Move .06 diopter for each mm of movement

 $5 \times .06 = .3$ diopters

Minus lenses have a stronger effective power the closer to the eye it gets so you must order weaker lenses to compensate.

So, -8.00 - 0.30 = -7.70 or -7.75@ 180

Sphere + Cylinder = Dioptric Power to be Calculated

 $\frac{10^2}{1000} = \frac{100}{1000} = 0.1$

Move 0.1 diopter for each mm of movement

 $5 \times 0.1 = 0.5$ diopters

So, -10.00 - 0.50 = -9.50 @ 090

Final power

-8.00 -2.00 x 180 refracted becomes

-7.75 - 1.75 x 180 compensated

Magnification

Magnification is in an issue due to aniseikonia, or a difference in the size of images as they are interpreted by the brain.

To minimize this difference, changes to the lens design can be utilized

- Thickness Thicker = more magnification
- Base curve Steeper front curve = more magnification
- Vertex Distance magnification increases the further away from the eye
- Index of Refraction higher the index, the thinner the material can be and therefore less magnification

ation her away from the eye the material can be and

Magnification

To Increase Magnification	To Increas
Increase Base Curve	Decrease Base
Increase Center Thickness	Decrease Cent
Increase Vertex of Plus Lens	Decrease Vert
Decrease Vertex of Minus Lens	Increase Verte

Remember:

For myopes, it is better to change the base curve and vertex distance as necessary For hyperopes, it is better to change the center thickness and vertex distance

se Minification

Curve

ter Thickness

ex of Plus Lens

ex of Minus Lens

Adjusting Vertex

Bevel placement on the lens

- Work with the lab
- Adjustment of nosepads
 - Pad Arms
 - Saddle on Zyl
 - Plus move further away from the eye
 - Minus bring closer to the eye

Conclusion

thinness

Fit is more important than lens material for

Fine details, all the way to the bevel, can make a large difference in the finished product
In today's world of online shopping, it is even more important to understand the nuances of fit.