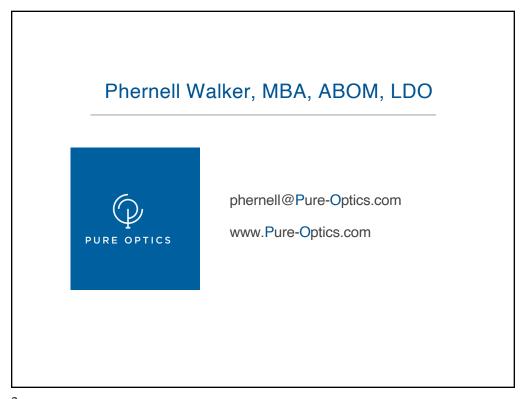
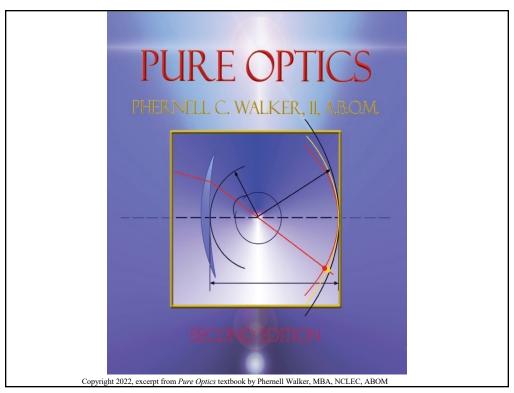
ANSI Standards; What's New?


Phernell Walker, MBA, ABOM, LDO


www.pure-optics.com

1

Phernell Walker, MBA, ABOM, LDO

- Master in Ophthalmic Optics
- Master of Business Administration
- Bachelor of Science in Business
- Associate of Science in Opticianry
- ABO Certified
- NCLE Certified
- Author of text-book, Pure Optics
- Joe Bruneni Award in Optics, Association of Schools Colleges of Optometry
- Beverly Meyers Achievement Award in Ophthalmic Optics

Objectives

- Why do we need standards?
- Define ANSI
- ANSI Categories
- ⊌ Z80.1
- Q & A

Copyright 2022, excerpt from Pure Optics textbook by Phernell Walker, MBA, LDO, ABOM

5

Why Do We Need Standards?

- Standards exist to protect patients
- Provide a set of expected outcomes across our profession
- Allow us to measure against a standard benchmark

Copyright 2022, excerpt from Pure Optics textbook by Phernell Walker, MBA, LDO, ABOM

American Society for Testing Materials

Formally called, American Society for Testing Materials (ASTM), is now an international organizations that sets standards on a number of industries. For eyewear, they make recommendations related to sporting goods (i.e. eye protectors for hockey masks and racket-ball).

Copyright 2022, excerpt from Pure Optics textbook by Phernell Walker, MBA, LDO, ABOM

7

Food & Drug Administration (FDA)

- FDA is an agency that protects consumers and ensures the validity and safety of products
- The FDA places the responsibility on the manufacturer to ensure that glasses are safe by producing lenses that are impact resistant based on law
- The FDA defines the manufacturer (i.e. the optician) as the last inspecting official of the prescription eyewear

Copyright 2022, excerpt from Pure Optics textbook by Phernell Walker, MBA, LDO, ABOM

Federal Trade Commission (FTC)

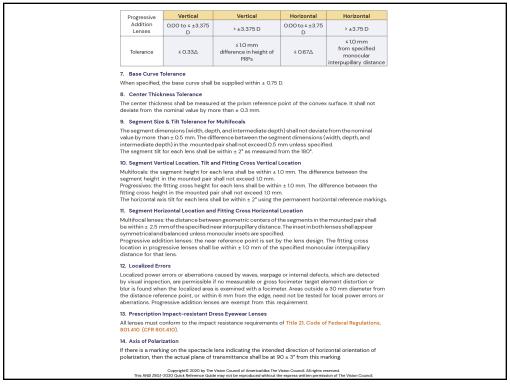
- FTC is a government agency designed to protect consumers as well as business against deceptive and unfair business practices.
- FTC Eyeglasses I:

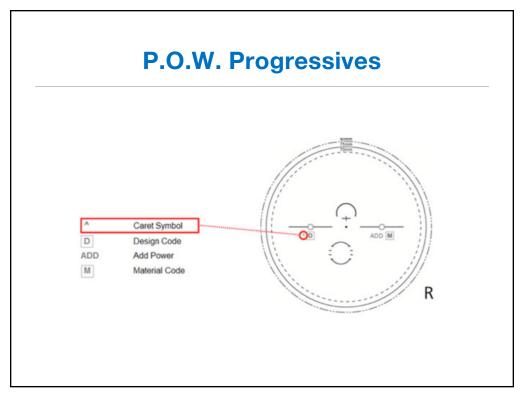
Patients are permitted to receive a copy of their prescription without additional cost. Patients may elect to fill their Rx at any ophthalmic dispensary.

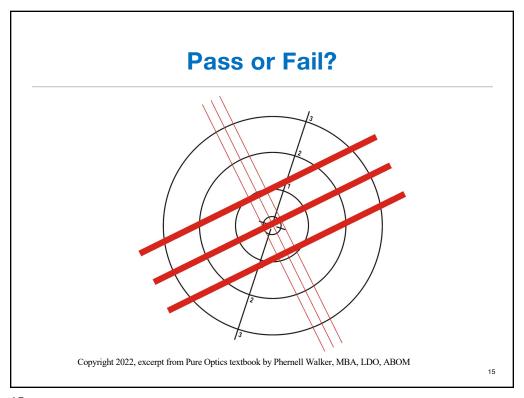
• FTC Eyeglasses II: Studies and surveys the business relationships between the "Four O's"

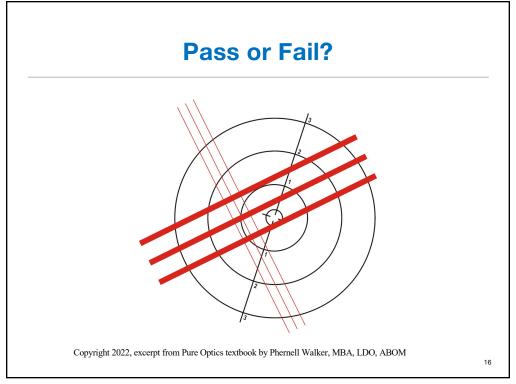
Copyright 2022, excerpt from Pure Optics textbook by Phernell Walker, MBA, LDO, ABOM

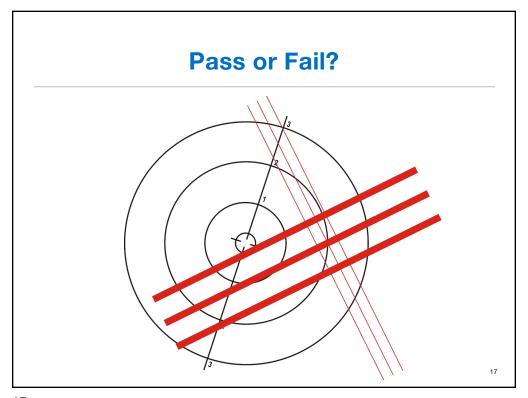
9

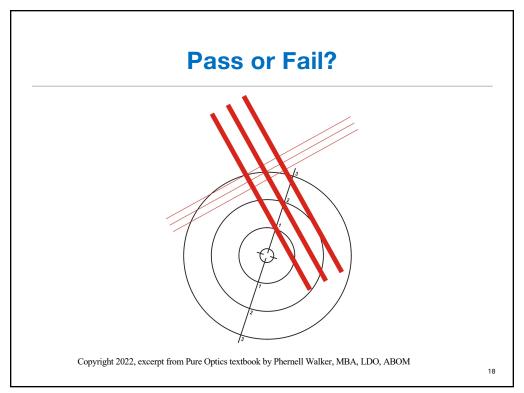

American National Standards Institute (ANSI)

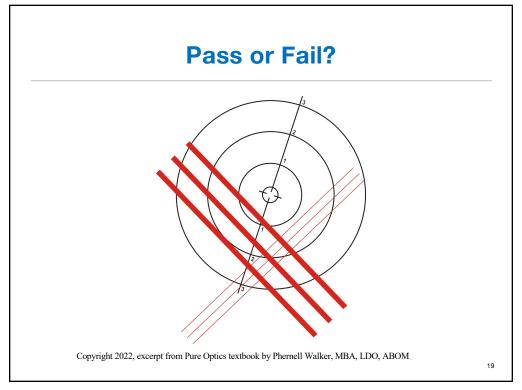

- Introduced in the 1950's
- composed of committees that make recommendations for many industries to include the ophthalmic industry


American National Standards Institute (ANSI)


- Z80.1-2020 ophthalmic lenses for dress wear
- Z87.1-2020 ophthalmic safety lenses. The standard approved for 2020 set standards for impact resistance based on a projectile moving at a low and high velocity vs. lens thickness for safety frames.


 Tolerance on Dist a single reference 		ve Power (Singl	e Vision, Mu	Iltifoca	l and Powe	r Variation	Lenses wi
Sphere Meridian Po (minus cylinder convention)	wer Me	ance on Sphere eridian Power inus cylinder onvention)	Cyline ≥ 0.00 ≤ - 2.0	00 D >-2.0		DD .	Cylinder - 4.50 D
From - 6.50 D to + 6	.50 D	±0.13D	± 0.1	3 D	± 0.1	5 D	±4%
Stronger than ±6.50	D D	±2%	±0.1	3 D	± 0.1	5 D	±4%
Tolerance on Dist with more than or			er Variation	Lenses	"Progress	ive Addition	n Lenses"
Sphere Meridian Po (minus cylinder convention)	Me (mi	ince on Sphere ridian Power nus cylinder onvention)	Cyline ≥ 0.00 ≤ - 2.0	D	Cylind > - 2.0 ≤ - 3.5	D C	Cylinder - 3.50 D
From - 8.00 D to + 8	.00 D	±0.16D	±0.1	6D ±0.18		8 D	±5%
Stronger than ± 8.0	0 D	±2%	±0.1	6 D	±0.1	8 D	±5%
3. Tolerance on dire	ction of cylind	ler axis					
Nominal value of the cylinder power (D)	< -0.12 D	≥ -0.12 D ≤ -0.25 D	> -0.25 D ≤ -0.50 D		0.50 D 0.75 D	> -0.75 D ≤ -1.50 D	> -1.50 D
Tolerance of the axis (degrees)	Not Defined	± 14°	± 7°	:	± 5°	± 3°	± 2°
4. Tolerance on add	ition power fo	r multifocal and	d progressiv	re addit	tion lenses		
Nominal value of ad	1	≤ 4.00 D		> 4.00 D			
Nominal value of the	wer (D) :	±0.12 D		±0.18 D	±0.18 D		
5. Tolerance on PrisThe prismatic power reference point shall reference on Pris	measured at t not be more th	he prism refere an 1.0 mm away	ence point	shall no	t exceed 0		
Single Vision	Vertical	Verti	cal	Но	rizontal	Hor	izontal
And Multifocal Lenses	00 to ≤ ±3.375 D	>±3.3	75 D	0.00	to ≤ ±2.75 D	> ±2.75 D	
Tolerance	≤ 0.33∆	≤ 1.0 mm difference in height of PRPs		≤ 0.67∆		≤ ± 2.5 mm from specified distance interpupillary distance	





Practice Makes Perfect

What is the ANSI Z80.1-2020 tolerance for base curve?

a)
$$+ / - 0.75 D$$

b)
$$+ / -1.00$$
 D

$$c) + / - 0.25 D$$

d)
$$+ / -0.50$$
 D

Practice Makes Perfect

The tolerance for axis with a cylinder power of -0.50 D is:

- a) +/-7 degrees
- b) + / 5 degrees
- c) + / 3 degrees
- d) + /- 2 degrees

21

Practice Makes Perfect

The ANSI Z80.1-2020 tolerance SV vertical prism meridian for dioptric power less than \leq 3.375 D is:

- a) 0.25 D
- b) 0.33 D
- c) 0.50 D
- d) 0.67 D

Practice Makes Perfect

The ANSI Z80.1-2020 tolerance PAL horizontal meridian for dioptric power less than \leq 3.75 is:

- a) 0.25 D
- b) 0.33 D
- c) 0.50 D
- d) 0.67 D

23

Practice Makes Perfect

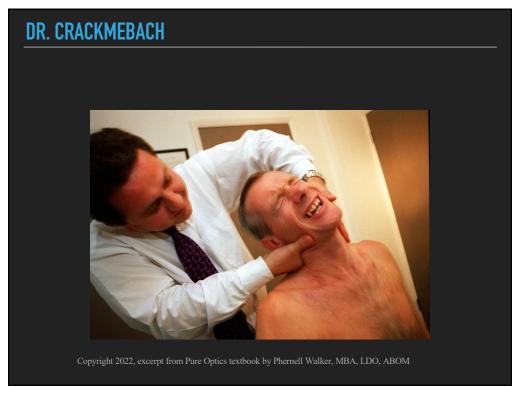
The ANSI Z80.1-2020 tolerance for prism in the PAL horizontal meridian for dioptric power greater than > 3.75 D is:

- a) 2.5mm variance
- b) 1.0mm variance
- c) 0.50 D
- d) 0.67 D

Practice Makes Perfect

Which organization permits a patient to receive a copy of their prescription without additional cost?

- a) FDA
- b) FTC
- c) ANSI
- d) ASTM


25

PRACTICE MAKES PERFECT

- Chief Complaint: Neck pain holding head downward angle.
 Room appears downward angle.
- ▶ VA: 20/20 OU
- Onset: After 2 weeks of continuous wear
- Modifying factors: went to Dr. Crackmebach, chiropractor without relief

Copyright 2022, excerpt from Pure Optics textbook by Phernell Walker, MBA, LDO, ABOM

LAB ORDER

OD: -6.00 -0.75 x 180 OS: -6.50 -1.00 x 180

PD: 61

OC: 26

A = 51

DBL = 18

B = 40

ED = 53

Pantoscopic Tilt: 12 degrees

Copyright 2022, excerpt from Pure Optics textbook by Phernell Walker, MBA, LDO, ABON

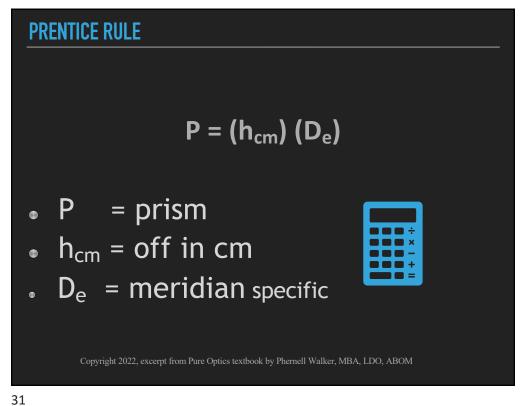
29

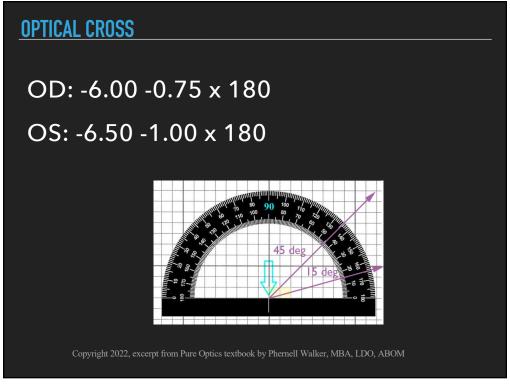
NEUTRALIZED GLASSES

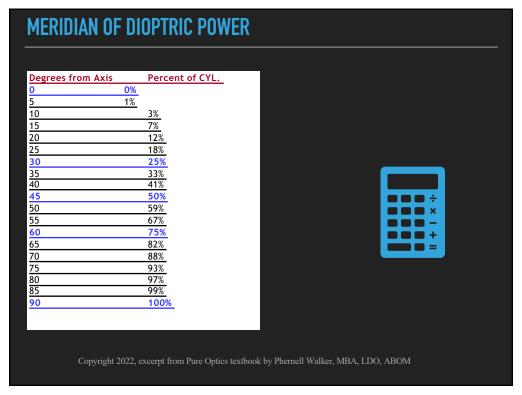
OD: -6.00 -0.75 x 180

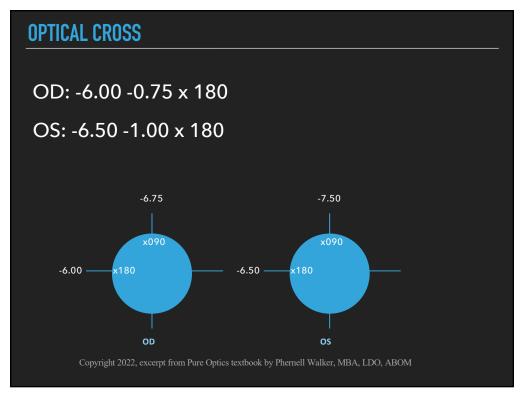
OS: -6.50 -1.00 x 180

PD: 61


Lab Edged:


PD: 29/31


OC: 20



Copyright 2022, excerpt from Pure Optics textbook by Phernell Walker, MBA, LDO, ABOM

Patient Rx OD: -6.00 -0.75 x 180 OS: -6.50 -1.00 x 180 PD: 61 OC: 26 Lab Results: OD: -6.00 -0.75 x 181 OD: -6.00 -0.75 x 181 OS: -6.50 -1.00 x 178 PD: 29/31 OC: 20

35

PRENTICE RULE $P = (h_{cm}) (D_e)$ • P = ? • $h_{cm} = \text{OD: } 6\text{mm} = 0.6\text{cm}$ • OS: 6mm = 0.6cm• $D_e = \text{OD: } -6.75 \times 090$ OS: -7.50×090 Copyright 2022, excerpt from Pure Optics textbook by Phernell Walker, MBA, LDO, ABOM

SOLUTION

$$P = (h_{cm}) (D_e)$$

 $P = OD: (0.6cm) (-6.75) = 4.05^ B.U.$

 $P = OS: (0.6cm) (-7.50) = 4.50^{B.U.}$

Prism Imbalance = 0.45[^] Imbalance

Total Prism = $\sim 4.00^{\circ}$

*images appear downward due to BU prism causing head cape and possible neck pain.

Solution: Base Down Prism should be prescribed to resolve the unwanted prism.

- Prism is neither +/-
- Integer determines: base direction & compounding vs. neutralizing
- Lack of O.C. induces power shift for Sph/Cyl/Axis

Copyright 2022, excerpt from Pure Optics textbook by Phernell Walker, MBA, LDO, ABOM

37

Questions

Copyright 2022, excerpt from Pure Optics textbook by Phernell Walker, MBA, LDO, ABOM