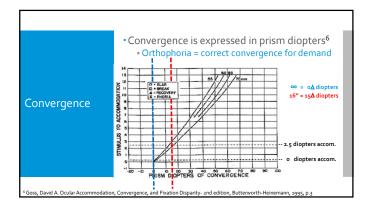
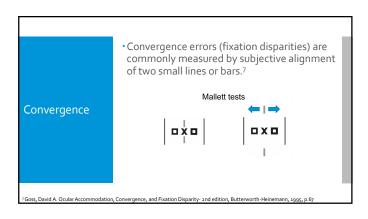
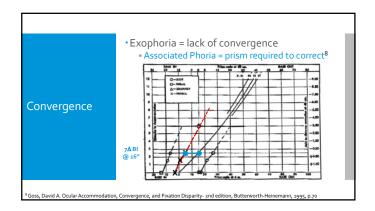
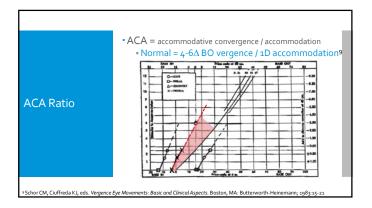
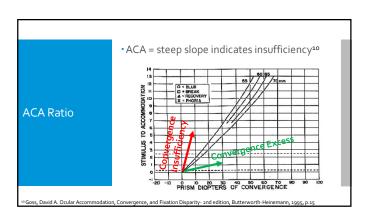

Accommodation
 Convergence
 Effect of Spectacle Lenses on ACA Ratio
 Progressive Addition Lenses
 ✓ Adaption Case Study
 Myopia Management

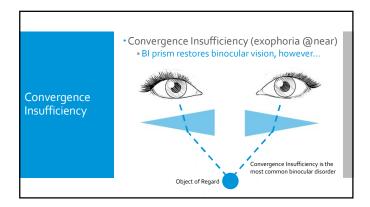


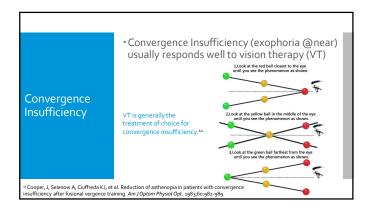


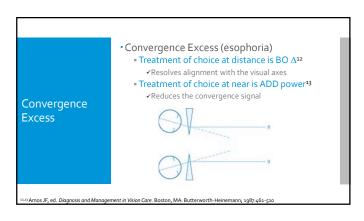


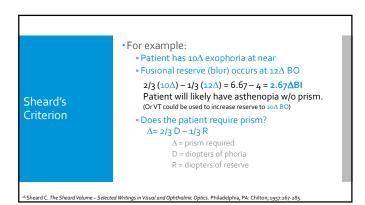


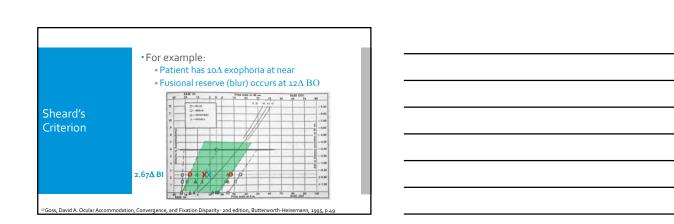











	• ZCSBV = zone of clear single binocular vision14	
ZCSBV	MAG ST St St St St St St St	
	7 1 -5.6 1 -5.7 1 -5.7 1 -5.7 1 -5.7 1 -5.7	
	3 -1-20 3 -0-20	-
	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
²⁴ Fry GA. Further experiments on the ac	commodation-convergence relationship. Am J Optom Arch Am Acad Optom. 1939;16:325-336	

	• Dr. Merideth Morgan established "normal" phorias in the 1940-60s ¹⁵		
	Tests	Expected	▼ Standard Deviation ▼
	Distance Lateral Phoria Base In (Distance) - Blur	1 exophoria	•/-2 prism diopters
	Base In (Distance) - Break	7 prism diopters	+/-3 prism diopters
	Base In (Distance) - Recovery	4 prism diopters	+/-2 prism diopters
A NI - Was a	Base Out (Distance) - Blur	9 prism diopters	+/-4 prism diopters
Morgan's Norms	Base Out (Distance) - Break	19 prism diopters	+/-8 prism diopters
	Base Out (Distance) - Recovery	10 prism diopters	+/-4 prism diopters
	Near Lateral Phoria	3 exophoria	+/-3 prism diopters
	Base In (Near) - Blur	13 prism diopters	+/-4 prism diopters
	Base In (Near) - Break	21 prism diopters	+/-4 prism diopters
	Base In (Near) - Recovery	13 prism diopters	+/-5 prism diopters
	Base Out (Near) - Blur	17 prism diopters	+/-5 prism diopters
	Base Out (Near) - Break	21 prism diopters	+/-6 prism diopters
	Base Out (Near) - Recovery	11 prism diopters	+/-7.00 prism diopters
	AC/A ratio	4:1	+/-2.00 prism diopters
	Accommodation: Push Up	18 - (1/3) x age	+/-2.00 D
	Accommodation: Fused Cross Cylinder	+0.50 D	+/-0.50 D
	Accommodation: NRA	+2.00	+/-0.50 D
	Accommodation: PRA	-2.37	+/-1.00 D

	_
Morgan's Norms	• General observations • A small amount of exophoria is normal • 1∆ up to 3∆ at distance • 3∆ up to 6∆ at near • Normally, it takes considerable prism to create blur at near • 13 ∆Bl • 17 ∆BO • ACA Ratios can fall between 2-6∆/1 diopter of accommodation

Asthenopia – weakness or rapid fatigue of the eyes often accompanied by pain and headache (webster) Dr. Charles Sheard's criterion Fusional reserve should be at least 2x the demand Does the patient require prism? Δ = 2/3 D − 1/3 R Δ = prism required Description = diopters of phoria R = diopters of reserve [±]Sheard C. The Sheard Volume – Selected Writings in Visual and Ophthalmic Optics. Philadelphia, PA: Chilton, 1957:267-285.

Case Study - 43 year old wearing 1st PAL

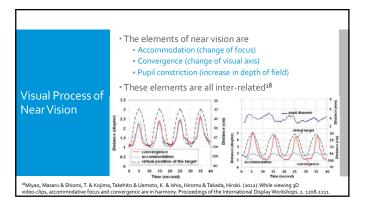
- Returns to office complaining of
 - Headache & asthenopia
 - Occasional blur
- Re-dotting the lenses reveals
 - FRP is <u>perfectly</u> placed
 - Lenses are straight, well-mounted
 - Frame fit is good (8 panto, 7 wrap, 12mm vertex)
- Recheck reveals 20/15 distance, so ADD is "bumped"

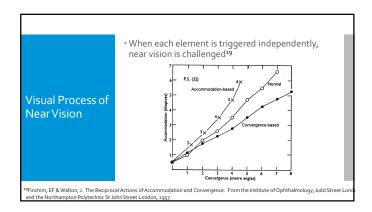
 - New lenses are "unusable"
- What is a *possible* explanation?

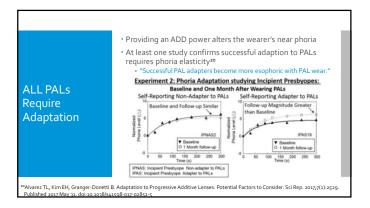
Case Study - 43 year old wearing 1st PAL

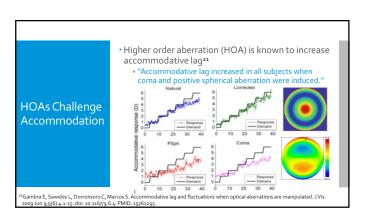
- If the patient has insufficient convergence...

 The ADD power further reduces convergence

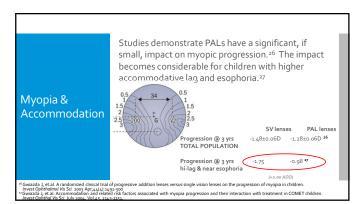

 ✓ A +1.00 ADD reduces convergence signal by the ACA Ratio
 (ACA = accommodative convergence / Idopter of accommodation)

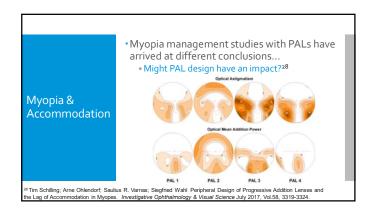

 ✓ If the patient is already exophoric at near, the ADD increases exophoria

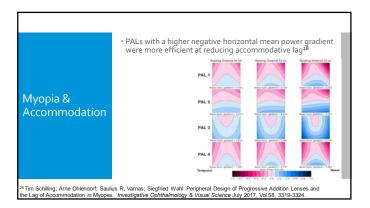

 If ACA Ratio = 3, patient has 3 more diopters of exophoria at near

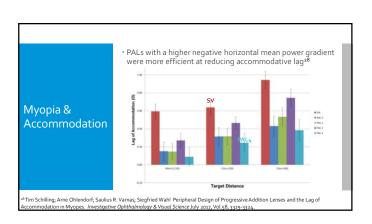

 ✓ If fusional reserve is insufficient, symptoms may be the result

 - Increasing the ADD actually makes the situation worse
 - ✓ Because it's not a problem of accommodation...
 ✓ ...it's a problem of convergence
- · Note: this is the realm of an optometrist
 - The first line of investigation is lens fitment
 Refer back to the OD with your observations
- What simple test could an <u>OD</u> perform to see if convergence may be the issue?


	Progressive surfaces create HOAs HOAs reduce image sharpnesswhich increases accommodative lag		
HOAs Challenge	Comparison of Wavefront Aberration Levels	Comparison of Visual Sharpness in Low-Right Conditions Designing performance Designing performance Designing performance	
Accommodation	Vioritar lens until M.A.V Technology Comp Z Comp Y Comp X Comp W Com	\$ 05 07 07 07 07 07 07 07 07 07 07 07 07 07	
²² Data on File – Essilor of America			


Low Light Challenges Accommodation


- Accommodation requires light
 - "...at an illumination of 0.0117 foot-candle, the average error for accommodation alone is 1/23 of the standard distance and that for accommodation plus convergence is 1/58 of the standard distance"23
 - "At a point near the lower visual threshold accommodation alone breaks down while convergence shows little change in the rate of increase in error." ²⁴
 - "These findings were interpreted as indicating that convergence is a more important distance cue than accommodation under low illumination and that the physiological resting states of convergence and accommodation are relatively independent." 25


3 Israel, H. E. (1923). Accommodation and Convergence under Low Illumination. Journal of Experimental Psychology, 6(3), 223–233.

*Ibid. *Owens DA, Liebowitz HW. Accommodation, convergence, and distance perception in low illumination. Am J Optom Physiol Opt. 1808 0565; (1): 61.00.

	 Accommodation Triggered by convergence Refined by blur Performs best with high contrast Typically settles on the edge of focus depth
Summary	Convergence Triggered by accommodation Refined by fixation disparities
	 ADD powers shift phorias exo Successful PAL wearers become more eso
	Asthenopia occurs when convergence is challenged Blur occurs when accommodation takes vision outside of depth of focus

"James S. Wolffsohn, Leon N. Davies, Presbyopia: Effectiveness of correction strategies,
Progress in Retind and Eye Research, Volume 68, 2019, Pages 124-143

"Intros. Jenedia, peasoncome, complect, brained, elsap_collet, 2ctivities (Figure_8, 4.afligure_8, 4.afligure_

	¹⁷ Goss, pg. 49 ¹⁸ Miyao, Masaru & Shiomi, T. & Kojima, Takehito & Uemoto, K. & Ishio, Hiromu & Takada, Hiroki, (2012). While viewing 3D video-clips, accommodative focus and convergence are in harmony. Proceedings of the International Display Workshops. 2. 1208-1211. ¹⁸ Finchin, PE & Walton, J. The Reciprocal Actions of Accommodation and Convergence. From the Institute of Ophthalmology, Judd Street London and the Northampton Polytechnic. St John Street London, 1957. ¹⁸ Alvarez TL, Kim EH, Granger-Donetti B. Adaptation to Progressive Additive Lenses: Potental Endocts to Consider. Si Rep. 2017;(1):3239. ²¹ Gambra E, Sawides L, Dorronsoro C, Marcos S. Accommodative lag and fluctuations when optical abertains are maniputed. J Vis. 2009. pp. 3g/61/4, 21-3.	
Citations	22 Data on File – Essilor of America 23 Israel, H. E. (1932). Accommodation and Convergence under Low Illumination. Journal of Experimental Psychology, 6(3), 223–233. 24 Ibid. 25 Owens D.A, Liebowitz H.W. Accommodation, convergence, and distance perception in low Illumination. Am I Optom Physiol Opt. 1980 Sep.57(3):540–50. 26 Gwiazda I, et al. A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Invest Ophthalmol VS Gz. 203 Aprj.4(4):1432–500 27 Gwiazda I, et al. Accommodation and related risk factors associated with myopia progression	
	and their interaction with treatment in COMET children. Invest OphthalVis Sci. July 2004, VOI.45, 2143-2151.	
	³⁸ Tim Schilling, Arne Ohlendorf, Sauluis R. Varnas, Siegfried Wahl Peripheral Design of Progressive Addition Lense and the Log of Accommodation in Myopes. Investigative Ophthalmology & Visual Science July 2017, Vol.58, 3319-3324.	