The ODs Role in Diabetes

Sherrol A. Reynolds O.D., FAAO Associate Professor NSU College of Optometry

Course Description

This course will provide the latest information on diabetes-related retinal disease (DRD). Emphasis will be on the OD's role in early detection using the latest in diagnostic modalities and therapeutic advances for vision-threatening diabetic retinopathy.

Goal

Provide attendees with the latest diagnostic strategies and therapeutic advances for DRD and discuss integration of these innovations into clinical practice.

Learning Objectives

At the conclusion of this course, attendees should be better able to effectively:

- 1) Understand the latest scope of diabetes.
- 2) Recognize the risk factors, classification, and advancements in early detection and treatment of diabetes-related retinal disease (DRD).
- 3) Appreciate the latest technologies in diagnosis of hypertensive retinopathy- ultra wide-field imaging, multi-modal imaging with SD-OCT and OCT angiography (OCTA).
- 4) Describe interprofessional team strategies for improving care coordination and outcomes in patients with diabetes.

Abstract

With nearly half of Americans affected with diabetes— more than 37 million adults and 96 million pre-diabetics at risk, diabetes is a major public health problem. This course will provide the latest information on diabetes-related retinal disease (DRD). Emphasis will be on the OD's role in early detection using the latest in diagnostic modalities and therapeutic advances for vision-threatening diabetic retinopathy.

The OD's Role in Diabetes

Sherrol A. Reynolds O.D., FAAO Associate Professor NSU College of Optometry

COURSE OUTLINE

- **I.** Latest on Diabetes (National Diabetes Fact Sheet 2022)
 - United States:
 - o Total: 37.3 million people have diabetes (1 in 10 people)
 - o Diagnosed: 28.7 million people, including 28.5 million adults
 - o Undiagnosed: 8.5 million people (1 in 5 people)
 - o Prediabetes: 96 million people (1 in 3 people)
 - Globally
 - O Diabetes globally will increase from 536.6 million (10.5% of the world's population) in 2021 to 783.2 million by 2045.
 - Ethnicity, Education and Family Income are strong predictors of diabetes
 - Diabetes healthcare impact
- **II.** Diabetes-related retinal disease (DRD)
 - Diabetic Retinopathy (DR)- leading cause of preventable blindness in working aged adults (20-74 years of age)
 - o Diabetic macular edema (DME)- is the leading cause of vision loss among patients with DR. Centered vs non-centered DME
 - Diabetic macular ischemia (DMI)- Vascular anomalies (loops & dilations)
 Capillary dropout & FAZ enlargement
 - Macular Ischemia can impact anti-VEGF Treatment
 - ~28.5 million have vision threatening DRD
 - o Expected to increase to 16 million by 2050
 - o Initial sign of underlying disease (33% of type 2 DM) case presentation
 - Risk factors- A (A1C), B (blood pressure), C (cholesterol, and smoking
 - Mean A1C levels of 8.8% for those with type 1 diabetes and 8.6% for those type 2 diabetes
 - A1C is unreliable in patients with anemia, hemoglobinopathies, or iron deficiency. Evidence shows that A1C differs among ethnic groups
 - Time in Range (TIR)- A new parameter to evaluate blood glucose control.
 Indicates the percentage of time a person's glucose value was within the target range during a defined period
 - Target range: 70–180 mg/dL
 - Recommended TIR for most: >70%
 - The higher the TIR range percentage- the lower the risk of developing complications.

III. Diabetes-related retinal disease (DRD)

- Hyperglycemia induce microvascular damage:
 - Alterations in biochemical pathways- increased flux of advanced glycation end products/receptors (AGE/RAGE), polyol pathway, protein kinase C (PKC) activation, and hexosamine pathway produce oxidative stress
 - Damages the pericytes and weakens capillary walls which causes retinal ischemia — ↑ VEGF — ↑ vascular permeability — neovascularizationfibrovascular tissue causes retinal traction detachment.

IV. Innovation in Diagnosis- Case presentations

- Classification
 - o Diabetic Retinopathy Severity Score (DRSS)

Disease Severity Level	Findings Observable upon Dilated Ophthalmoscopy
No apparent retinopathy	No abnormalities
Mild NPDR (see Glossary)	Microaneurysms only
Moderate NPDR (see Glossary)	More than just microaneurysms but less than severe NPDR
Severe NPDR	
U.S. Definition	Any of the following (4-2-1 rule) and no signs of proliferative retinopathy:
	 Severe intraretinal hemorrhages and microaneurysms in each of four quadrants
	 Definite venous beading in two or more quadrants
	 Moderate IRMA in one or more quadrants
International Definition	Any of the following and no signs of proliferative retinopathy:
	 More than 20 intraretinal hemorrhages in each of four quadrants
	 Definite venous beading in two or more quadrants
	 Prominent IRMA in one or more quadrants
PDR	One or both of the following:
	 Neovascularization
	Vitreous/preretinal hemorrhage
RMA = intraretinal microvascular abr	ormalities; NPDR = nonproliferative diabetic retinopathy; PDR = proliferative diabetic retinopath
NOTE:	
. Any patient with two or more of	the characteristics of severe NPDR is considered to have very severe NPDR.
 DOD may be descrifted as bish. 	risk and non-high-risk. See Table 6 for more information.

- ETDRS and modified ETDRS scale
- Multimodal imaging
 - o OCT
 - Disorganization of the retinal inner layers (DRIL)
 - Centered involved (CI-DME) vs non-centered DME
 - \circ OCT(A)
 - subclinical microaneurysms (MAs)/ DMI- vascular anomalies (loops and dilations), capillary non-perfusion, neovascularization
 - Ultra-wide field imaging of DR
 - Eyes with predominantly peripheral lesions (defined as outside of ETDRS 7 standard field) had a 4.7- fold increased risk of progression to proliferative diabetic retinopathy (PDR)
 - Fundus autofluorescence (FAF)
 - Lipofuscin accumulation in DR
 - HyperFAF in DME
 - Abnormal visual function (e.g., decreased color perception, contrast sensitivity, and abnormal electrophysiology of the retina)

V. Standard of Care

- o PDR: PRP versus Anti-VEGF (Protocol S)
- o Anti-VEGF for PDR and CI-DME
 - RIDE/RISE, RESTORE, and VISTA/VIVID
 - FDA Approved therapy. Ranibizumab (Lucentis 0.3 mg) RIDE/RISE (\$1150); Aflibercept (Eylea) VIVID/VISTA

(\$2000), Dexamethasone implant (Ozurdex) – MEAD (\$1400), Fluocinolone implant (Iluvien) –FAME (\$9300)

- Off label therapy
 - Bevacizumab (Avastin) DRCR.net (\$70)
 - Intravitreal Triamcinolone (Triessence) \$150

VI. Latest on Therapeutic Advances:

- Vabysmo ((faricimab-svoa)
 - o Bispecific- Angiopoietin 2 & Anti-VEGF
- Susvimo- port delivery system-Ranibizumab
 - o Complications
 - o Recent Recall
- Protocol V- Anti-VEGF for CI-DME in patients with good vision (20/25 vision or better)
- PANORAMA study: Aflibercept (Eylea) for moderate-to-severe and severe nonproliferative diabetic retinopathy (NPDR) with or without DME.
- Protocol AE: whether photo-biomodulation-PBT (670 nm wavelength) has a beneficial effect in eyes with DME
- Protocol W: Whether anti-VEGF therapy prevents vision-threatening complications in severe non-proliferative DR_and whether favorable anatomic outcomes will lead to favorable visual acuity outcomes

VII. American Diabetes Association

- HCPs: Consistent Messages
- Recognition of anti-VEGF agents as the 'gold standard' for diabetic macular edema (DME)
- Retinal photography may serve as a screening tool for retinopathy.
- Diabetic teleretinal screening
- The Multidisciplinary Diabetes Care Team

VIII. Conclusion

- Diabetes and the risk of vision-threatening retinopathy is on the rise.
- Early diagnosis and treatment have significantly improved the patient visual prognosis and outcome.
- Multidisciplinary diabetes care team.
- OD's play a vital role by incorporating the latest in diagnostic modalities and therapeutic advances for vision-threatening diabetic retinopathy (VTDR), proliferative DR and diabetic macular edema (DME).

References:

- 1. Center for Disease Control and Prevention. National Diabetes Statistics Report, 2022. Atlanta, GA
- 2. American Diabetes Association Professional Practice Committee; 12. Retinopathy, Neuropathy, and Foot Care: *Standards of Medical Care in Diabetes—2022. Diabetes Care* 1 January 2022; 45 (Supplement 1): S185–S19
- 3. Time in range: a new parameter to evaluate blood glucose control in patients with diabetes. Diabetol Metab Syndr 12, 22 (2020)
- 4. Lu J, Ma X, Zhou J, et al. Diabetes Care 2018;41:2370–2376
- Wilkinson CP, Ferris FL III, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003; 110:1679
- 6. Assessing the Severity of Diabetic Retinopathy: Early Treatment Diabetic Retinopathy Study Report Number 1
- 7. Solomon SD, Chew E, Duh EJ, et al. Diabetic Retinopathy: A Position Statement by the American Diabetes Association. *Diabetes Care*. 2017; 40(3): 412-418
- 8. Effect of initial management with aflibercept vs laser photocoagulation vs observation on vision loss among patients with diabetic macular edema involving the center of the macula and good visual acuity: a randomized clinical trial. JAMA. 2019; 321:1880-1894.
- 9. Assessment of the DRCR Retina Network approach to management with initial observation for eyes with center-involved diabetic macular edema and good visual acuity: a secondary analysis of a randomized clinical trial. JAMA Ophthalmol. 2020; 138:341-349
- 10. Brown DM. Intravitreal aflibercept injection (IAI) for moderately severe to severe nonproliferative diabetic retinopathy (NPDR): The Phase 3 PANORAMA Study. Invest Ophthalmol Vis Sci. 2018; 59:1889.
- 11. Effect of Intravitreous Anti–Vascular Endothelial Growth Factor vs Sham Treatment for Prevention of Vision-Threatening Complications of Diabetic Retinopathy the Protocol W Randomized Clinical Trial. JAMA Ophthalmol. 2021;139(7):701-712.